IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp278-286.html
   My bibliography  Save this article

Energy cost minimization for net zero energy homes through optimal sizing of battery storage system

Author

Listed:
  • Sharma, Vanika
  • Haque, Mohammed H.
  • Aziz, Syed Mahfuzul

Abstract

Whilst a net zero energy (NZE) home produces the same amount of energy as it consumes it still exchanges significant amount of energy with the grid due to mismatch between the generation and load patterns. Consequently, the homeowner has to pay an annual electric bill because the cost of imported energy is usually higher than that of exported energy. Installing a local battery energy storage system (BESS) can reduce the electric bill by exchanging less energy with the grid. This paper proposes a method of determining the optimal size of a BESS for a typical NZE home with rooftop solar photovoltaic (PV) system to minimize the annual net payment for electricity and battery cost. The optimal battery size is determined through solving an optimization problem which is formulated using hourly load and PV generation data for a South Australian home, battery annual payment rate, retail price (RP), and feed-in tariff (FIT). The effects of interest rate, RP and FIT on the annual net payment are investigated. The results obtained are thoroughly analysed and clearly indicate that, with current installation cost of BESS and South Australian RP and FIT, the use of a local BESS is economically beneficial for the homeowner.

Suggested Citation

  • Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:278-286
    DOI: 10.1016/j.renene.2019.03.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dennis L Buchanan & Mark H. A. Davis, 2018. "Metals and Energy Project Appraisal and Finance," World Scientific Book Chapters, in: Metals and Energy Finance Application of Quantitative Finance Techniques to the Evaluation of Minerals, Coal and Petroleum Projects, chapter 8, pages 159-187, World Scientific Publishing Co. Pte. Ltd..
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Huang, Zhijia & Lu, Yuehong & Wei, Mengmeng & Liu, Jingjing, 2017. "Performance analysis of optimal designed hybrid energy systems for grid-connected nearly/net zero energy buildings," Energy, Elsevier, vol. 141(C), pages 1795-1809.
    4. Sarah A. Alkhodair & Benjamin C. M. Fung & Osmud Rahman & Patrick C. K. Hung, 2018. "Improving interpretations of topic modeling in microblogs," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(4), pages 528-540, April.
    5. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    6. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    7. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    8. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    9. Reimuth, Andrea & Prasch, Monika & Locherer, Veronika & Danner, Martin & Mauser, Wolfram, 2019. "Influence of different battery charging strategies on residual grid power flows and self-consumption rates at regional scale," Applied Energy, Elsevier, vol. 238(C), pages 572-581.
    10. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    11. Graditi, G. & Ippolito, M.G. & Telaretti, E. & Zizzo, G., 2016. "Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 515-523.
    12. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
    13. Wen-Chieh Wu & Yu-Chun Ma & Steven C. Bourassa, 2018. "Folk Customs and Home Improvement Decisions," International Real Estate Review, Global Social Science Institute, vol. 21(3), pages 317-341.
    14. Falilou Fall & Daniela Glocker, 2018. "Improving the Czech health care system," OECD Economics Department Working Papers 1522, OECD Publishing.
    15. Oecd, 2018. "Improving online disclosures with behavioural insights," OECD Digital Economy Papers 269, OECD Publishing.
    16. Xun Li & Rigoberto A. Lopez & Rui Wang, 2018. "Energy price shocks and milk price adjustments," Applied Economics Letters, Taylor & Francis Journals, vol. 25(4), pages 268-271, February.
    17. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    2. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    3. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).
    4. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    6. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    7. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    8. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    9. Zhixian Wang & Ying Wang & Qia Ding & Chen Wang & Kaifeng Zhang, 2020. "Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    10. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    11. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    13. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    14. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    15. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    16. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    17. Gimeno-Frontera, Beatriz & Mainar-Toledo, María Dolores & Sáez de Guinoa, Aitana & Zambrana-Vasquez, David & Zabalza-Bribián, Ignacio, 2018. "Sustainability of non-residential buildings and relevance of main environmental impact contributors' variability. A case study of food retail stores buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 669-681.
    18. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:278-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.