IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220320703.html
   My bibliography  Save this article

Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery

Author

Listed:
  • Dumont, O.
  • Lemort, V.

Abstract

The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. Pumped thermal energy storage (PTES or Carnot battery) converts electric energy to thermal energy with a heat pump (or another heating system) when electricity production is greater than demand; when electricity demand outstrips production the PTES generates power from two thermal storage reservoirs (possibly a Rankine cycle mode). Classical PTES architectures do not achieve more than 60% roundtrip electric efficiency. However, innovative architectures, using waste heat recovery (thermally integrated PTES) are able to reach electrical power production of the power cycle larger than the electrical power consumption of the heat pump, increasing the value of the technology. In this paper, a general model is developed to draw mappings of performance depending on the two main inputs (waste heat and ambient air temperatures). Whatever the storage configurations, the best performances are reached when the waste heat temperature is high, the air temperature is low, and the lift of the heat pump is low. Finally, the thermally integrated PTES technology is compared with other technologies of energy storages and is theoretically promising due to its high roundtrip efficiency, its low specific price and no specific geographical conditions.

Suggested Citation

  • Dumont, O. & Lemort, V., 2020. "Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320703
    DOI: 10.1016/j.energy.2020.118963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    3. Anna Jahnke & Lia Strenge & Christian Fleszner & Niklas Wolf & Tim Jungnickel & Felix Ziegler, 2013. "First cycle simulations of the Honigmann process with LiBr/H 2 O and NaOH/H 2 O as working fluid pairs as a thermochemical energy storage," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(suppl_1), pages 55-61, March.
    4. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    5. Peterson, Richard B., 2011. "A concept for storing utility-scale electrical energy in the form of latent heat," Energy, Elsevier, vol. 36(10), pages 6098-6109.
    6. Sebastian Staub & Peter Bazan & Konstantinos Braimakis & Dominik Müller & Christoph Regensburger & Daniel Scharrer & Bernd Schmitt & Daniel Steger & Reinhard German & Sotirios Karellas & Marco Pruckne, 2018. "Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity," Energies, MDPI, vol. 11(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carro, A. & Chacartegui, R. & Ortiz, C. & Carneiro, J. & Becerra, J.A., 2022. "Integration of energy storage systems based on transcritical CO2: Concept of CO2 based electrothermal energy and geological storage," Energy, Elsevier, vol. 238(PA).
    2. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    3. Kosmadakis, George & Neofytou, Panagiotis, 2022. "Reversible high-temperature heat pump/ORC for waste heat recovery in various ships: A techno-economic assessment," Energy, Elsevier, vol. 256(C).
    4. Scharrer, Daniel & Bazan, Peter & Pruckner, Marco & German, Reinhard, 2022. "Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses," Energy, Elsevier, vol. 261(PA).
    5. José Ignacio Linares & Arturo Martín-Colino & Eva Arenas & María José Montes & Alexis Cantizano & José Rubén Pérez-Domínguez, 2023. "Carnot Battery Based on Brayton Supercritical CO 2 Thermal Machines Using Concentrated Solar Thermal Energy as a Low-Temperature Source," Energies, MDPI, vol. 16(9), pages 1-24, May.
    6. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    7. Alsagri, Ali Sulaiman, 2023. "An innovative design of solar-assisted carnot battery for multigeneration of power, cooling, and process heating: Techno-economic analysis and optimization," Renewable Energy, Elsevier, vol. 210(C), pages 375-385.
    8. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    9. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    10. Chen, Yuzhu & Hu, Xiaojian & Xu, Wentao & Xu, Qiliang & Wang, Jun & Lund, Peter D., 2022. "Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax," Energy, Elsevier, vol. 250(C).
    11. Emanuele Nadalon & Ronelly De Souza & Melchiorre Casisi & Mauro Reini, 2023. "Part-Load Energy Performance Assessment of a Pumped Thermal Energy Storage System for an Energy Community," Energies, MDPI, vol. 16(15), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    2. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    3. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    4. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    5. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    6. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    7. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    8. Varghese, Sushant & Sioshansi, Ramteen, 2020. "The price is right? How pricing and incentive mechanisms in California incentivize building distributed hybrid solar and energy-storage systems," Energy Policy, Elsevier, vol. 138(C).
    9. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    10. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    11. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    12. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    13. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    14. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    15. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    16. Seyed Ahmad Reza Mir Mohammadi Kooshknow & Rob den Exter & Franco Ruzzenenti, 2020. "An Exploratory Agent-Based Modeling Analysis Approach to Test Business Models for Electricity Storage," Energies, MDPI, vol. 13(7), pages 1-14, April.
    17. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    19. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    20. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.