IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920314781.html
   My bibliography  Save this article

Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China

Author

Listed:
  • He, Chao
  • Yang, Lu
  • Cai, Bofeng
  • Ruan, Qingyuan
  • Hong, Song
  • Wang, Zhen

Abstract

The unprecedented cessation of human activities during the COVID-19 pandemic has affected China's industrial production and NOx emissions. Quantifying the changes in NOx emissions resulting from COVID-19 and associated governmental control measures is crucial to understanding its impacts on the environment. Here, we divided the research timeframe into three periods: the normal operation period (P1), the Spring Festival period (P2), and the epidemic period following the Spring Festival (P3). We then calculated the NOx operating vent numbers and emission concentrations of key polluting enterprises in 29 provinces and 20 industrial sectors and compared the data for the same periods in 2020 and 2019 to obtain the impacts of COVID-19 on industrial NOx emissions. We found that spatially, from P1 to P2 in 2020, the operating NOx vent numbers in North China changed the most, with a relative change rate of –33.84%. Comparing the operating vent numbers in P1 and P3, East China experienced the largest decrease, approximately –32.72%. Among all industrial sectors, the mining industry, manufacturing industry, power, heat, gas, and water production and supply industry, and the wholesale and retail industry, were the most heavily influenced. In general, the operating vent numbers of key polluting enterprises in China decreased by 24.68%, and the standardized NOx (w)5-day decreased by an average of −9.54 ± −6.00 due to the COVID-19 pandemic. The results suggest that COVID-19 significantly reduced the NOx emission levels of the key polluting enterprises in China.

Suggested Citation

  • He, Chao & Yang, Lu & Cai, Bofeng & Ruan, Qingyuan & Hong, Song & Wang, Zhen, 2021. "Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314781
    DOI: 10.1016/j.apenergy.2020.116042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davide Tonini & Hans G. M. Saveyn & Dries Huygens, 2019. "Environmental and health co-benefits for advanced phosphorus recovery," Nature Sustainability, Nature, vol. 2(11), pages 1051-1061, November.
    2. P. Y. Oikawa & C. Ge & J. Wang & J. R. Eberwein & L. L. Liang & L. A. Allsman & D. A. Grantz & G. D. Jenerette, 2015. "Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    3. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Manfred Lenzen & Mengyu Li & Arunima Malik & Francesco Pomponi & Ya-Yen Sun & Thomas Wiedmann & Futu Faturay & Jacob Fry & Blanca Gallego & Arne Geschke & Jorge Gómez-Paredes & Keiichiro Kanemoto & St, 2020. "Global socio-economic losses and environmental gains from the Coronavirus pandemic," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    5. Yang, Chunyu & Wang, Yu & Dong, Zhanfeng, 2020. "Evaluating the impact of denitrification tariff on energy-related NOx generation in China: Policy effects and regional disparities," Energy Policy, Elsevier, vol. 142(C).
    6. Guojun He & Yuhang Pan & Takanao Tanaka, 2020. "The short-term impacts of COVID-19 lockdown on urban air pollution in China," Nature Sustainability, Nature, vol. 3(12), pages 1005-1011, December.
    7. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    8. Li, Mingquan & Shan, Rui & Hernandez, Mauricio & Mallampalli, Varun & Patiño-Echeverri, Dalia, 2019. "Effects of population, urbanization, household size, and income on electric appliance adoption in the Chinese residential sector towards 2050," Applied Energy, Elsevier, vol. 236(C), pages 293-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqing Zhou & Haibin Liu, 2023. "Temporal and Spatial Distribution of Ozone and Its Influencing Factors in China," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Aurelia Rybak & Aleksandra Rybak, 2021. "The Impact of the COVID-19 Pandemic on Gaseous and Solid Air Pollutants Concentrations and Emissions in the EU, with Particular Emphasis on Poland," Energies, MDPI, vol. 14(11), pages 1-25, June.
    3. Aneta Włodarczyk & Agata Mesjasz-Lech, 2021. "Ecological and Economic Context of Managing Enterprises That Are Particularly Harmful to the Environment and the Well-Being of Society," Energies, MDPI, vol. 14(10), pages 1-24, May.
    4. Costa, Vinicius B.F. & Pereira, Lígia C. & Andrade, Jorge V.B. & Bonatto, Benedito D., 2022. "Future assessment of the impact of the COVID-19 pandemic on the electricity market based on a stochastic socioeconomic model," Applied Energy, Elsevier, vol. 313(C).
    5. Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
    6. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Anh H. Dang & Trong-Anh Trinh, 2022. "The Beneficial Impacts of COVID-19 Lockdowns on Air Pollution: Evidence from Vietnam," Journal of Development Studies, Taylor & Francis Journals, vol. 58(10), pages 1917-1933, October.
    2. Dang, Hai-Anh H. & Trinh, Trong-Anh, 2021. "Does the COVID-19 lockdown improve global air quality? New cross-national evidence on its unintended consequences," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
    3. Cottafava, Dario & Gastaldo, Michele & Quatraro, Francesco & Santhiá, Cristina, 2022. "Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy," Economic Modelling, Elsevier, vol. 110(C).
    4. Keisuke Nansai & Susumu Tohno & Satoru Chatani & Keiichiro Kanemoto & Shigemi Kagawa & Yasushi Kondo & Wataru Takayanagi & Manfred Lenzen, 2021. "Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Lee, Munseob & Finerman, Rachel, 2021. "COVID-19, commuting flows, and air quality," Journal of Asian Economics, Elsevier, vol. 77(C).
    6. Alf Hornborg, 2021. "Beyond the Image of COVID-19 as Nature’s Revenge: Understanding Globalized Capitalism through an Epidemiology of Money," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    7. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    8. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    9. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    11. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    12. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    13. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics.
    14. Ali Farazmand & Elina Simone & Giuseppe Lucio Gaeta & Salvatore Capasso, 2022. "Corruption, lack of Transparency and the Misuse of Public Funds in Times of Crisis: An introduction," Public Organization Review, Springer, vol. 22(3), pages 497-503, September.
    15. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    16. Anna Zsofia Bajomi & Nóra Feldmár & Sergio Tirado-Herrero, 2021. "Will Plans to Ease Energy Poverty Go Up in Smoke? Assessing the Hungarian NECP through the Lens of Solid Fuel Users’ Vulnerabilities," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    17. Dang, Hai-Anh H. & Trinh, Trong-Anh, 2020. "Does the COVID-19 Pandemic Improve Global Air Quality? New Cross-national Evidence on Its Unintended Consequences," GLO Discussion Paper Series 606, Global Labor Organization (GLO).
    18. Charlier, Dorothée & Legendre, Bérangère, 2021. "Fuel poverty in industrialized countries: Definition, measures and policy implications a review," Energy, Elsevier, vol. 236(C).
    19. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    20. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.