IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipas030626192201563x.html
   My bibliography  Save this article

Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR

Author

Listed:
  • Hu, Wenshuo
  • Zhang, Yu
  • Wang, Xiaoxiang
  • Wu, Weihong
  • Song, Hao
  • Yang, Yang
  • Liu, Shaojun
  • Zheng, Chenghang
  • Gao, Xiang

Abstract

Ceria has absorbed extensive interests in functioning as catalysts for low-temperature (LT) selective catalytic reduction (SCR) of NOx due to its abundant surface oxygen species and salient redox property. The mechanistic interpretations of how such redox property contributes to its LT-SCR activity, however, still remain debated. Here, we use a model tungsten-promoted ceria catalyst (WO3/CeO2), known as preeminent in LT-SCR reactions, and combine steady-state kinetic, structural characteristic and in situ spectroscopic experiments with theoretical treatments to reveal the mechanistic connections between NO oxidative activation and LT-SCR turnovers. We show that, compared with NO oxidation to NO2, NO oxidative activation to nitrite intermediates is both kinetically and thermodynamically more favorable; surface nitrate species are not detected in the present case, indicating their more difficult formation than nitrites. All these results thus suggest the prevalence of NO activation to nitrites over NO to nitrates or oxidation to NO2 and subsequent occurrence of fast SCR in the WO3/CeO2-catalyzed LT-SCR reaction. These findings progress the understanding of LT-SCR reaction mechanism on CeO2-based catalysts and convey a detailed perspective of different reaction intermediates and their consequences for LT-SCR turnovers, which may contribute to the rational design of catalysts towards further improved LT-SCR activity.

Suggested Citation

  • Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pa:s030626192201563x
    DOI: 10.1016/j.apenergy.2022.120306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201563X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    4. He, Chao & Yang, Lu & Cai, Bofeng & Ruan, Qingyuan & Hong, Song & Wang, Zhen, 2021. "Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China," Applied Energy, Elsevier, vol. 281(C).
    5. Khristamto Aditya Wardana, Muhammad & Lim, Ocktaeck, 2022. "Investigation of ammonia homogenization and NOx reduction quantity by remodeling urea injector shapes in heavy-duty diesel engines," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    2. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    3. Wontak Choi & Seunggi Choi & Sangkyung Na & Dongmin Shin & Hyomin Jeong & Yonmo Sung, 2023. "Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications," Energies, MDPI, vol. 17(1), pages 1-16, December.
    4. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    5. Yuqing Zhou & Haibin Liu, 2023. "Temporal and Spatial Distribution of Ozone and Its Influencing Factors in China," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    6. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    7. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    8. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    9. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    10. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    11. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    12. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Xingyu Liang & Ziyang Liu & Kun Wang & Xiaohui Wang & Zhijie Zhu & Chaoyang Xu & Bo Liu, 2021. "Impact of Pilot Injection on Combustion and Emission Characteristics of a Low-Speed Two-Stroke Marine Diesel Engine," Energies, MDPI, vol. 14(2), pages 1-20, January.
    14. Grzegorz Koszalka & Andrzej Wolff, 2023. "Frictional Losses of Ring Pack in SI and HCCI Engine," Energies, MDPI, vol. 16(24), pages 1-17, December.
    15. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    16. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    18. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    19. Chen, Ying-jie & Tan, Pi-qiang & Duan, Li-shuang & Liu, Yang & Lou, Di-ming & Hu, Zhi-yuan, 2023. "Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration," Energy, Elsevier, vol. 268(C).
    20. Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pa:s030626192201563x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.