IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v312y2022ics0306261922001738.html
   My bibliography  Save this article

Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions

Author

Listed:
  • Xu, Leilei
  • Treacy, Mark
  • Zhang, Yan
  • Aziz, Amir
  • Tuner, Martin
  • Bai, Xue-Song

Abstract

Gasoline and methanol are highly recommended for low temperature combustion (LTC) engines due to their high research octane number. However, engines fuelled with these fuels suffer from high unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions at low loads, which can be improved by controlling the level of mixture stratification. This paper reports on the experimental and numerical comparison of the emission characteristics and engine performance of methanol and iso-octane in a heavy-duty direct-injection compression ignition engine operating in HCCI and PPC regimes. Overall, methanol requires a higher intake temperature, compared with iso-octane, to counter the high heat of vaporization. The onset of ignition is from the relatively fuel-lean regions resulting in lower CO emissions. This is due to the methanol ignition delay times being less sensitive to the fuel/air mixture and the larger temperature gradient of the equivalence ratio. Methanol achieves lower charge stratification because of its low stoichiometric A/F ratio, which extends the SOI window with ultra-low NOx emissions. However, methanol suffers from higher UHC emissions in the HCCI regime due to fuel trapped in the crevice region. Three cases include HCCI, PPC with low and high mixture stratification were detailed investigated. Of these cases, PPC with low mixture stratification case shows the highest engine thermal efficiency and the lowest emissions. Methanol has more advantages operating in the PPC regime in the aspect of emissions.

Suggested Citation

  • Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001738
    DOI: 10.1016/j.apenergy.2022.118714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922001738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    2. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    3. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    4. Zhang, F. & Yu, R. & Bai, X.S., 2015. "Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures," Applied Energy, Elsevier, vol. 149(C), pages 283-296.
    5. Wang, Bin & Yao, Anren & Yao, Chunde & Chen, Chao & Wang, Hui, 2020. "In-depth comparison between pure diesel and diesel methanol dual fuel combustion mode," Applied Energy, Elsevier, vol. 278(C).
    6. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    7. Asad, Usman & Kumar, Raj & Zheng, Ming & Tjong, Jimi, 2015. "Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles," Applied Energy, Elsevier, vol. 157(C), pages 838-850.
    8. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    9. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    11. Koegl, M. & Hofbeck, B. & Will, S. & Zigan, L., 2018. "Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates," Applied Energy, Elsevier, vol. 209(C), pages 426-434.
    12. Belgiorno, Giacomo & Dimitrakopoulos, Nikolaos & Di Blasio, Gabriele & Beatrice, Carlo & Tunestål, Per & Tunér, Martin, 2018. "Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine," Applied Energy, Elsevier, vol. 228(C), pages 2221-2234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    2. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    3. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    4. Rickard Solsjö & Mehdi Jangi & Bengt Johansson & Xue-Song Bai, 2020. "The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine," Energies, MDPI, vol. 13(21), pages 1-18, October.
    5. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    6. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    7. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    8. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    9. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
    11. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    13. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    14. Agarwal, Avinash Kumar & Kumar, Vikram & Ankur Kalwar, Ashutosh Jena, 2022. "Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype," Energy, Elsevier, vol. 248(C).
    15. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Yao, Mingfa, 2021. "Development of a reduced primary reference fuel-PODE3-methanol-ethanol-n-butanol mechanism for dual-fuel engine simulations," Energy, Elsevier, vol. 235(C).
    17. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    18. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.