IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics036054422101687x.html
   My bibliography  Save this article

Development of a reduced primary reference fuel-PODE3-methanol-ethanol-n-butanol mechanism for dual-fuel engine simulations

Author

Listed:
  • Liu, Xinlei
  • Wang, Hu
  • Zheng, Zunqing
  • Yao, Mingfa

Abstract

Polyoxymethylene dimethyl ethers (PODEn) have attracted worldwide attention, which could be adopted as an alternative or additive of diesel in compression ignition engines. This work focuses on the implementation of PODE for dual-fuel engine combustion. The effects of four dual-fuel combinations on the engine combustion performance and emissions were studied, including PODE-isooctane, PODE-methanol, PODE-ethanol, and PODE-n-butanol. First, a new reduced mechanism of primary reference fuel-PODE3-methanol-ethanol-n-butanol was developed and validated. This mechanism was then employed for the three-dimensional numerical investigation. The results demonstrated that at an exhaust gas recirculation (EGR) rate of 45%, PODE-n-butanol and PODE-isooctane generated higher thermal efficiencies than PODE-methanol and PODE-ethanol, primarily due to the higher reactivity of n-butanol and isooctane compared to methanol and ethanol. The highest thermal efficiency of 47.0% was obtained using PODE-NC4H9OH with a start of injection timing of −7.5°. With an EGR rate of 52%, NOx emissions of all cases met the regulation limit, which, however, were achieved at a sacrifice of engine efficiency; additionally, the highest thermal efficiency of 43.3% was achieved using PODE-CH3OH with an injection timing of −17.5°.

Suggested Citation

  • Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Yao, Mingfa, 2021. "Development of a reduced primary reference fuel-PODE3-methanol-ethanol-n-butanol mechanism for dual-fuel engine simulations," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s036054422101687x
    DOI: 10.1016/j.energy.2021.121439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101687X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    2. Duraisamy, Ganesh & Rangasamy, Murugan & Govindan, Nagarajan, 2020. "A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 542-556.
    3. Shim, Euijoon & Park, Hyunwook & Bae, Choongsik, 2018. "Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine," Applied Energy, Elsevier, vol. 225(C), pages 1068-1077.
    4. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
    5. An, Yanzhao & Jaasim, Mohammed & Raman, Vallinayagam & Hernández Pérez, Francisco E. & Sim, Jaeheon & Chang, Junseok & Im, Hong G. & Johansson, Bengt, 2018. "Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline," Energy, Elsevier, vol. 158(C), pages 181-191.
    6. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    7. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
    8. Huang, Haozhong & Lv, Delin & Chen, Yingjie & Zhu, Jizhen & Zhu, Zhaojun & Pan, Mingzhang & Chen, Yajuan & Teng, Wenwen, 2019. "Development and validation of a reduced multi-component mechanism for diesel engine application," Applied Energy, Elsevier, vol. 254(C).
    9. Ma, Baodong & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Gao, Jian & Chen, Chao, 2020. "Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    2. Liu, Junheng & Ma, Haoran & Liang, Wenwen & Yang, Jun & Sun, Ping & Wang, Xidong & Wang, Yongxu & Wang, Pan, 2022. "Experimental investigation on combustion characteristics and influencing factors of PODE/methanol dual-fuel engine," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junheng & Ma, Haoran & Liang, Wenwen & Yang, Jun & Sun, Ping & Wang, Xidong & Wang, Yongxu & Wang, Pan, 2022. "Experimental investigation on combustion characteristics and influencing factors of PODE/methanol dual-fuel engine," Energy, Elsevier, vol. 260(C).
    2. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    3. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    4. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    5. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    6. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    7. Calam, Alper & Solmaz, Hamit & Yılmaz, Emre & İçingür, Yakup, 2019. "Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine," Energy, Elsevier, vol. 168(C), pages 1208-1216.
    8. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    9. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    10. Agarwal, Avinash Kumar & Kumar, Vikram & Ankur Kalwar, Ashutosh Jena, 2022. "Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype," Energy, Elsevier, vol. 248(C).
    11. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
    12. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    13. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    14. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    15. Lee, Jeongwoo & Chu, Sanghyun & Lim, Donghyun & Jung, Hyunsung & Chi, Yohan & Min, Kyoungdoug, 2022. "Comparison of combustion and emission characteristics under single-fueled and dual-fueled conditions with premixed compression ignition," Energy, Elsevier, vol. 241(C).
    16. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    17. Jan Verhaegh & Frank Kupper & Frank Willems, 2022. "Data-Driven Air-Fuel Path Control Design for Robust RCCI Engine Operation," Energies, MDPI, vol. 15(6), pages 1-25, March.
    18. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    19. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    20. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s036054422101687x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.