IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5535-d433025.html
   My bibliography  Save this article

The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine

Author

Listed:
  • Rickard Solsjö

    (Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden)

  • Mehdi Jangi

    (Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden)

  • Bengt Johansson

    (Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden)

  • Xue-Song Bai

    (Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden)

Abstract

This paper presents a numerical investigation of the ignition and combustion process of a primary reference fuel in a partially premixed light-duty internal combustion (PPC) engine. Partially pre-mixed combustion is achieved by employing a multiple injection strategy with three short injection events of fuel pulses. The timing of the first two fuel pulses, 48 and 22 crank angle degrees before top dead center, are chosen with the purpose to stratify the fuel and air charge, whereas the third injection, at five crank angle degrees before top dead center, serves as an actuator of the main heat release. In addition to this baseline injection, three alternative injection strategies are studied, including a split-fuel two-injection strategy and modified triple-injection strategies. Large eddy simulations are employed utilizing a skeletal chemical kinetic mechanism for primary reference fuel capable of capturing the low-temperature ignition and the high temperature combustion. The large eddy simulation (LES) results are compared with experiments in an optical accessible engine. The results indicate that the first ignition sites are in the bowl region where the temperature is relatively higher, and the reaction fronts thereafter propagate in the swirl direction and towards the centerline of the cylinder. The charge from the first two injections initially undergoes low-temperature reactions and thereafter high-temperature reservoirs are formed in the bowl region. The main heat-release is initiated in the engine when the fuel from the third injection reaches the high-temperature reservoirs. Finally, the remaining fuel in the lean mixtures from the first two injections is oxidized. By variation of the injection strategy, two trends are identified: (1) by removing the second injection a higher intake temperature is required to enable the ignition of the charge, and (2) by retarding second injection, a longer ignition delay is identified. Both can be explained by the stratification of fuel and air mixture, and the resulting reactivity in various equivalence ratio and temperature ranges. The LES results reveal the details of the charge stratification and the subsequent heat release process. The present results indicate a rather high sensitivity of partially premixed combustion process to the injection strategies.

Suggested Citation

  • Rickard Solsjö & Mehdi Jangi & Bengt Johansson & Xue-Song Bai, 2020. "The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine," Energies, MDPI, vol. 13(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5535-:d:433025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belgiorno, Giacomo & Dimitrakopoulos, Nikolaos & Di Blasio, Gabriele & Beatrice, Carlo & Tunestål, Per & Tunér, Martin, 2018. "Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine," Applied Energy, Elsevier, vol. 228(C), pages 2221-2234.
    2. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    3. Zhang, F. & Yu, R. & Bai, X.S., 2015. "Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures," Applied Energy, Elsevier, vol. 149(C), pages 283-296.
    4. Gong, Cheng & Jangi, Mehdi & Bai, Xue-Song, 2014. "Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel," Applied Energy, Elsevier, vol. 136(C), pages 373-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    2. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    3. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    4. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    5. Payri, Raúl & Salvador, F.J. & Manin, Julien & Viera, Alberto, 2016. "Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector," Applied Energy, Elsevier, vol. 162(C), pages 541-550.
    6. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    7. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    8. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    9. Jafarmadar, Samad & Nemati, Peyman, 2015. "Numerical investigation of the effect split injection scheme on exergy terms in an IDI (indirect injection) diesel engine by three dimensional modeling," Energy, Elsevier, vol. 93(P2), pages 2280-2291.
    10. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    11. Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    12. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    13. An, Yanzhao & Jaasim, Mohammed & Raman, Vallinayagam & Hernández Pérez, Francisco E. & Sim, Jaeheon & Chang, Junseok & Im, Hong G. & Johansson, Bengt, 2018. "Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline," Energy, Elsevier, vol. 158(C), pages 181-191.
    14. Zhang, Miao & Derafshzan, Saeed & Richter, Mattias & Lundgren, Marcus, 2020. "Effects of different injection strategies on ignition and combustion characteristics in an optical PPC engine," Energy, Elsevier, vol. 203(C).
    15. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    16. Cheng, Xinwei & Gan, Suyin & Ng, Hoon Kiat, 2020. "A numerical study on the quasi-steady spray and soot characteristics for soybean methyl ester and its blends with ethanol using CFD-reduced chemical kinetics approach," Energy, Elsevier, vol. 200(C).
    17. Ansari, Ehsan & Menucci, Tyler & Shahbakhti, Mahdi & Naber, Jeffrey, 2019. "Experimental investigation into effects of high reactive fuel on combustion and emission characteristics of the Diesel - Natural gas Reactivity Controlled Compression Ignition engine," Applied Energy, Elsevier, vol. 239(C), pages 948-956.
    18. Zhang, Min & Ong, Jiun Cai & Pang, Kar Mun & Bai, Xue-Song & Walther, Jens H., 2022. "Large eddy simulation of soot formation and oxidation for different ambient temperatures and oxygen levels," Applied Energy, Elsevier, vol. 306(PB).
    19. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    20. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5535-:d:433025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.