Author
Listed:
- Adil Ashraf
(The University of Manchester)
- Mohammed Basheer
(The University of Manchester
University of Toronto
Humboldt University of Berlin)
- Jose M. Gonzalez
(The University of Manchester)
- Eduardo A. Martínez Ceseña
(The University of Manchester
The University of Manchester)
- Mikiyas Etichia
(The University of Manchester)
- Emmanuel Obuobie
(Council for Scientific and Industrial Research)
- Andrea Bottacin-Busolin
(The University of Manchester
University of Padua)
- Jan Adamowski
(McGill University)
- Mathaios Panteli
(The University of Manchester
University of Cyprus)
- Julien J. Harou
(The University of Manchester
University College London)
Abstract
Many countries worldwide are transitioning from fossil fuel-dependent economies to carbon neutrality, driven by the 2030 agenda for sustainable development and the Paris Agreement. However, without considering the regional distribution of essential services like water and energy, this transition could inadvertently maintain or increase inequities, threatening sustainable development. Here, we argue that spatial equity of benefits should be considered in planning low-carbon energy transitions, especially in developing countries with multisector interdependencies and high service disparities between regions. We propose an analytical framework that can help analysts and policymakers plan for regionally equitable climate-compatible futures. The multisector design framework combines integrated river basin-power system simulation with artificial intelligence design tools. The utility of the framework is demonstrated for Ghana by identifying the most efficient infrastructure intervention portfolios and their implied trade-offs between spatial equity in water and energy service provision, carbon emissions, food production, and river ecosystem performance. Case-study results show that an equitable low-carbon energy transition will require increased investments in renewable energy and transmission alongside more informed infrastructure system planning. With low renewable investments, equity can be improved, but at the cost of higher emissions and electricity supply curtailments.
Suggested Citation
Adil Ashraf & Mohammed Basheer & Jose M. Gonzalez & Eduardo A. Martínez Ceseña & Mikiyas Etichia & Emmanuel Obuobie & Andrea Bottacin-Busolin & Jan Adamowski & Mathaios Panteli & Julien J. Harou, 2025.
"Delivering equity in low-carbon multisector infrastructure planning,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59738-7
DOI: 10.1038/s41467-025-59738-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59738-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.