IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304633.html
   My bibliography  Save this article

Bidding strategy for battery storage systems in the secondary control reserve market

Author

Listed:
  • Merten, Michael
  • Olk, Christopher
  • Schoeneberger, Ilka
  • Sauer, Dirk Uwe

Abstract

In continental Europe, automatic Frequency Restoration Reserve (aFRR) is one of three control reserve services to counteract imbalances in the electrical grid. The market is dominated by a few operators of conventional power plants since the auction design is complex and new players face various entrance barriers. In order to stabilize the electrical grid in the future, renewable generation technologies need to enter the market. To encourage operators (and traders) of renewable generation facilities to enter the market, this paper presents a bidding strategy based on an optimization approach for deriving an optimal bid and for estimating the revenue potential on this market. The focus is on the participation of Battery Energy Storage Systems (BESS) either in standalone mode or in conjunction with a virtual power plant (VPP). An in-depth cost breakdown and battery ageing model support the derivation of earning potentials. With current costs of containerized BESS, an operation is not economically viable. However, with a predicted cost breakdown for the year 2025 and a pooled operation, profits can be generated. But even for the reduced-cost scenario, profits were found to be lower than on the Frequency Control Reserve (FCR) market.

Suggested Citation

  • Merten, Michael & Olk, Christopher & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Bidding strategy for battery storage systems in the secondary control reserve market," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304633
    DOI: 10.1016/j.apenergy.2020.114951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ocker, Fabian & Ehrhart, Karl-Martin & Belica, Matej, 2018. "Harmonization of the European balancing power auction: A game-theoretical and empirical investigation," Energy Economics, Elsevier, vol. 73(C), pages 194-211.
    2. Heim, Sven & Götz, Georg, 2021. "Do Pay-As-Bid Auctions Favor Collusion? Evidence from Germany's market for reserve power," Energy Policy, Elsevier, vol. 155(C).
    3. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    4. Fabian Ocker & Karl‐Martin Ehrhart & Marion Ott, 2018. "Bidding strategies in Austrian and German balancing power auctions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Meng & Sorknæs, Peter & Lund, Henrik & Liang, Yongtu, 2022. "The bidding strategies of large-scale battery storage in 100% renewable smart energy systems," Applied Energy, Elsevier, vol. 326(C).
    2. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Glismann, Samuel, 2021. "Ancillary Services Acquisition Model: Considering market interactions in policy design," Applied Energy, Elsevier, vol. 304(C).
    4. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    5. Kristina Pandžić & Ivan Pavić & Ivan Andročec & Hrvoje Pandžić, 2020. "Optimal Battery Storage Participation in European Energy and Reserves Markets," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Zhao, Xinyi & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin & Oren, Shmuel S., 2020. "A stochastic distribution system planning method considering regulation services and energy storage degradation," Applied Energy, Elsevier, vol. 277(C).
    7. Fabian Rücker & Michael Merten & Jingyu Gong & Roberto Villafáfila-Robles & Ilka Schoeneberger & Dirk Uwe Sauer, 2020. "Evaluation of the Effects of Smart Charging Strategies and Frequency Restoration Reserves Market Participation of an Electric Vehicle," Energies, MDPI, vol. 13(12), pages 1-31, June.
    8. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    9. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2023. "Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling," Post-Print hal-04182119, HAL.
    10. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    11. Nebuloni, Riccardo & Meraldi, Lorenzo & Bovo, Cristian & Ilea, Valentin & Berizzi, Alberto & Sinha, Snigdh & Tamirisakandala, Raviteja Bharadwaj & Raboni, Pietro, 2023. "A hierarchical two-level MILP optimization model for the management of grid-connected BESS considering accurate physical model," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schillinger, Moritz, 2019. "Balancing Market Design and Opportunity Cost - The Swiss Case," Working papers 2019/14, Faculty of Business and Economics - University of Basel.
    2. Schillinger, Moritz & Weigt, Hannes, 2019. "Bidding into balancing markets in a hydro-dominated electricity system," Working papers 2019/13, Faculty of Business and Economics - University of Basel.
    3. Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
    4. Schillinger, Moritz, 2020. "Balancing-market design and opportunity cost: The Swiss case," Utilities Policy, Elsevier, vol. 64(C).
    5. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    6. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    7. Felix Röben & Hans Schäfers & Anna Meißner & Jerom de Haan, 2021. "Smart Balancing of Electrical Power in Germany: Fuzzy Logic Model to Simulate Market Response," Energies, MDPI, vol. 14(8), pages 1-25, April.
    8. Fabian Ocker & Karl‐Martin Ehrhart & Marion Ott, 2018. "Bidding strategies in Austrian and German balancing power auctions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    9. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    10. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    11. Casimir Lorenz & Clemens Gerbaulet, 2017. "Wind Providing Balancing Reserves: An Application to the German Electricity System of 2025," Discussion Papers of DIW Berlin 1655, DIW Berlin, German Institute for Economic Research.
    12. Finhold, E. & Gärtner, C. & Grindel, R. & Heller, T. & Leithäuser, N. & Röger, E. & Schirra, F., 2023. "Optimizing the marketing of flexibility for a virtual battery in day-ahead and balancing markets: A rolling horizon case study," Applied Energy, Elsevier, vol. 352(C).
    13. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    14. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    15. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    16. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    17. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    18. Liu, Chen & Shao, Zhen & Jiao, Jianling & Yang, Shanlin, 2024. "How connected is withholding capacity to electricity, fossil fuel and carbon markets? Perspectives from a high renewable energy consumption economy," Energy Policy, Elsevier, vol. 185(C).
    19. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    20. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.