IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924025844.html
   My bibliography  Save this article

Techno-economical assessment of battery storage combined with large-scale Photovoltaic power plants operating on energy and Ancillary Service Markets

Author

Listed:
  • Koubar, Mohamad
  • Lindberg, Oskar
  • Lingfors, David
  • Huang, Pei
  • Berg, Magnus
  • Munkhammar, Joakim

Abstract

A significant challenge is to determine the specific services Battery Energy Storage System (BESS) should provide to maximize profits. This study investigates the most profitable markets and sizes of BESS with utility-scale solar Photovoltaics (PV) power plants using techno-economic analysis frameworks. The objective is to maximize profitability in energy and frequency markets, focusing on primary regulation and day-ahead markets for Sweden and Germany. The inputs are historical market prices and frequency data, as well as real measurement PV power data. The results show that adding a BESS to an existing PV park does not result in a lower payback period than if implementing a stand-alone BESS. However, the payback period differs between Sweden and Germany during 2023, i.e., being 1.8 and 6.8 years, respectively. This is explained by the lower frequency market prices for Germany compared to Sweden. The technical results indicate that the BESS energy capacity after 10 years of operation is approximately 83% for Germany, whereas, for Sweden, it is around 87%. Also, combining the operating of BESS on primary regulation and day-ahead markets showed a 6-year payback period with a slight increase in loss of energy capacity (from 83 to 80%) for Germany. Moreover, combining various PV-BESS sizes showed a discrepancy in economic and technical metrics for the BESS in Germany, resulting in a best-case of a 6-year payback period. A sensitivity analysis, which examines a drop in the frequency control prices in the future relative to 2023 (by 20% and 50% for Germany and Sweden, respectively), reveals an increase in the payback period for both countries by approximately 1 year.

Suggested Citation

  • Koubar, Mohamad & Lindberg, Oskar & Lingfors, David & Huang, Pei & Berg, Magnus & Munkhammar, Joakim, 2025. "Techno-economical assessment of battery storage combined with large-scale Photovoltaic power plants operating on energy and Ancillary Service Markets," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025844
    DOI: 10.1016/j.apenergy.2024.125200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fusco, Andrea & Gioffrè, Domenico & Francesco Castelli, Alessandro & Bovo, Cristian & Martelli, Emanuele, 2023. "A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets," Applied Energy, Elsevier, vol. 336(C).
    2. Merten, Michael & Olk, Christopher & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Bidding strategy for battery storage systems in the secondary control reserve market," Applied Energy, Elsevier, vol. 268(C).
    3. Zhong, Jin & Bollen, Math & Rönnberg, Sarah, 2021. "Towards a 100% renewable energy electricity generation system in Sweden," Renewable Energy, Elsevier, vol. 171(C), pages 812-824.
    4. Kempitiya, Thimal & Sierla, Seppo & De Silva, Daswin & Yli-Ojanperä, Matti & Alahakoon, Damminda & Vyatkin, Valeriy, 2020. "An Artificial Intelligence framework for bidding optimization with uncertainty in multiple frequency reserve markets," Applied Energy, Elsevier, vol. 280(C).
    5. Martins, Jason & Miles, John, 2021. "A techno-economic assessment of battery business models in the UK electricity market," Energy Policy, Elsevier, vol. 148(PB).
    6. Killer, Marvin & Farrokhseresht, Mana & Paterakis, Nikolaos G., 2020. "Implementation of large-scale Li-ion battery energy storage systems within the EMEA region," Applied Energy, Elsevier, vol. 260(C).
    7. Engels, Jonas & Claessens, Bert & Deconinck, Geert, 2019. "Techno-economic analysis and optimal control of battery storage for frequency control services, applied to the German market," Applied Energy, Elsevier, vol. 242(C), pages 1036-1049.
    8. Klyve, Øyvind Sommer & Klæboe, Gro & Nygård, Magnus Moe & Marstein, Erik Stensrud, 2023. "Limiting imbalance settlement costs from variable renewable energy sources in the Nordics: Internal balancing vs. balancing market participation," Applied Energy, Elsevier, vol. 350(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collath, Nils & Cornejo, Martin & Engwerth, Veronika & Hesse, Holger & Jossen, Andreas, 2023. "Increasing the lifetime profitability of battery energy storage systems through aging aware operation," Applied Energy, Elsevier, vol. 348(C).
    2. Michas, Serafeim & Flamos, Alexandros, 2023. "Are there preferable capacity combinations of renewables and storage? Exploratory quantifications along various technology deployment pathways," Energy Policy, Elsevier, vol. 174(C).
    3. Michas, Serafeim & Flamos, Alexandros, 2024. "Least-cost or sustainable? Exploring power sector transition pathways," Energy, Elsevier, vol. 296(C).
    4. Rangarajan, Arvind & Foley, Sean & Trück, Stefan, 2023. "Assessing the impact of battery storage on Australian electricity markets," Energy Economics, Elsevier, vol. 120(C).
    5. Nebuloni, Riccardo & Meraldi, Lorenzo & Bovo, Cristian & Ilea, Valentin & Berizzi, Alberto & Sinha, Snigdh & Tamirisakandala, Raviteja Bharadwaj & Raboni, Pietro, 2023. "A hierarchical two-level MILP optimization model for the management of grid-connected BESS considering accurate physical model," Applied Energy, Elsevier, vol. 334(C).
    6. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    7. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Rakshith Subramanya & Matti Yli-Ojanperä & Seppo Sierla & Taneli Hölttä & Jori Valtakari & Valeriy Vyatkin, 2021. "A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves," Energies, MDPI, vol. 14(5), pages 1-23, February.
    9. Feng, Jie & Ran, Lun & Wang, Zhiyuan & Zhang, Mengling, 2024. "Optimal energy scheduling of virtual power plant integrating electric vehicles and energy storage systems under uncertainty," Energy, Elsevier, vol. 309(C).
    10. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.
    11. Kaiyan Wang & Xueyan Wang & Rong Jia & Jian Dang & Yan Liang & Haodong Du, 2022. "Research on Coupled Cooperative Operation of Medium- and Long-Term and Spot Electricity Transaction for Multi-Energy System: A Case Study in China," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    12. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    13. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).
    15. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    16. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2023. "Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling," Post-Print hal-04182119, HAL.
    17. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barbero, Giulia & Barilli, Riccardo, 2024. "An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons," Renewable Energy, Elsevier, vol. 228(C).
    18. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    19. Kristina Pandžić & Ivan Pavić & Ivan Andročec & Hrvoje Pandžić, 2020. "Optimal Battery Storage Participation in European Energy and Reserves Markets," Energies, MDPI, vol. 13(24), pages 1-21, December.
    20. Redelinghuys, L.G. & McGregor, C., 2024. "Multi-objective techno-economic optimisation of a Carnot battery application in a parabolic trough concentrating solar power plant," Applied Energy, Elsevier, vol. 376(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.