IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp603-609.html
   My bibliography  Save this article

Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator

Author

Listed:
  • Silalertruksa, Thapat
  • Gheewala, Shabbir H.
  • Pongpat, Patcharaporn

Abstract

The study aims to evaluate the sugarcane biorefinery and molasses ethanol production in Thailand using the combined environmental and economic sustainability indicator, so called “Eco-efficiency”. Four sugarcane biorefinery scenarios in Thailand are evaluated. The total output values (US$) and the life cycle greenhouse gas (GHG) emissions (kgCO2eq) are selected as the indicators for characterizing economic and environmental performance, respectively. The results show that the biorefinery system of mechanized farming along with cane trash utilization for power generation yields the highest eco-efficiency. The benefits come from the increased value added of the biorefinery together with the decreased GHG emissions of the biorefinery system. As compared to the base case scenario, the new systems proposed result in the eco-efficiency improvement by around 20–70%. The biorefinery concept induces reduction of GHG emissions attributed to molasses ethanol. Green cane production and harvesting results in further lowering of the GHG emissions. Integration of sugarcane biomass utilization across the entire sugarcane complex would enhance the sustainability of the sugarcane production system.

Suggested Citation

  • Silalertruksa, Thapat & Gheewala, Shabbir H. & Pongpat, Patcharaporn, 2015. "Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator," Applied Energy, Elsevier, vol. 160(C), pages 603-609.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:603-609
    DOI: 10.1016/j.apenergy.2015.08.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010235
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    2. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    3. Wang, Lei & Quiceno, Raul & Price, Catherine & Malpas, Rick & Woods, Jeremy, 2014. "Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 571-582.
    4. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    5. Huppes, Gjalt & Ishikawa, Masanobu, 2009. "Eco-efficiency guiding micro-level actions towards sustainability: Ten basic steps for analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1687-1700, April.
    6. Souza, Simone Pereira & Seabra, Joaquim E.A., 2013. "Environmental benefits of the integrated production of ethanol and biodiesel," Applied Energy, Elsevier, vol. 102(C), pages 5-12.
    7. Hennecke, Anna M. & Faist, Mireille & Reinhardt, Jürgen & Junquera, Victoria & Neeft, John & Fehrenbach, Horst, 2013. "Biofuel greenhouse gas calculations under the European Renewable Energy Directive – A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels," Applied Energy, Elsevier, vol. 102(C), pages 55-62.
    8. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    9. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    10. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    11. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    12. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    13. Shabbir H. Gheewala & Sébastien Bonnet & Kritana Prueksakorn & Pariyapat Nilsalab, 2011. "Sustainability Assessment of a Biorefinery Complex in Thailand," Sustainability, MDPI, Open Access Journal, vol. 3(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    2. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    3. Khoodaruth, A. & Oree, V. & Elahee, M.K. & Clark, Woodrow W., 2017. "Exploring options for a 100% renewable energy system in Mauritius by 2050," Utilities Policy, Elsevier, vol. 44(C), pages 38-49.
    4. repec:gam:jsusta:v:10:y:2018:i:4:p:952-:d:137882 is not listed on IDEAS
    5. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    6. Mutanga, Shingirirai Savious & de Vries, Marne & Mbohwa, Charles & Kumar, Dillip Das & Rogner, Holger, 2016. "An integrated approach for modeling the electricity value of a sugarcane production system," Applied Energy, Elsevier, vol. 177(C), pages 823-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:603-609. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.