IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9515-d1004300.html
   My bibliography  Save this article

Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand

Author

Listed:
  • Thapat Silalertruksa

    (Department of Environmental Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Chanipa Wirodcharuskul

    (Department of Environmental Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Shabbir H. Gheewala

    (The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi, 126 Prachauthit Road, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand)

Abstract

Sugarcane leaves and trash burning during harvesting, and vinasse management, are major challenges of the Thai sugarcane industry. Identification of the appropriate valorization pathways for both the biomass waste streams using the sugarcane biorefinery concept is necessary. This study aims to assess the environmental sustainability of five CE models, including (1) sugarcane trash for electricity, (2) sugarcane trash to biochar, (3) sugarcane trash as a soil conditioner, (4) vinasse as a bio-fertilizer, and (5) vinasse for power generation. Life cycle assessment has been conducted using the ReCiPE midpoint impact assessment method. The results revealed that all waste utilization scenarios can help reduce the environmental impacts compared to the base case. The utilization of sugarcane leaves and trash for electricity generation brings about the lowest environmental impacts due to the environmental credits from the substitution of Thai grid electricity. The utilization of sugarcane leaves can reduce impacts on climate change, terrestrial acidification, and ozone formation by about 20–104%, 43–61%, and 12–54%. Recycling vinasse as bio-fertilizer and for biogas production for electricity generation can reduce climate change impact by about 28–29%. There is a significant improvement of the avoidance of pre-harvesting burning of sugarcane in the Thai sugar industry, which has led to the big potential of sugarcane leaves biomass utilization. Recommendations to enhance the efficiency of using sugarcane leaves and vinasse are discussed. The integrated waste circulation scenarios on cane leaves and vinasses in the sugar-electricity-ethanol biorefinery shows advancement in the bio-circular-green economy (BCG) aspects for enhancing the environmental sustainability of the Thai sugarcane industry.

Suggested Citation

  • Thapat Silalertruksa & Chanipa Wirodcharuskul & Shabbir H. Gheewala, 2022. "Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand," Energies, MDPI, vol. 15(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9515-:d:1004300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Adrian & Thomson, Elspeth, 2009. "The development of biofuels in Asia," Applied Energy, Elsevier, vol. 86(Supplemen), pages 11-20, November.
    2. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    3. Silalertruksa, Thapat & Gheewala, Shabbir H. & Pongpat, Patcharaporn, 2015. "Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator," Applied Energy, Elsevier, vol. 160(C), pages 603-609.
    4. Goldemberg, José & Coelho, Suani Teixeira & Guardabassi, Patricia, 2008. "The sustainability of ethanol production from sugarcane," Energy Policy, Elsevier, vol. 36(6), pages 2086-2097, June.
    5. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    6. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prawat Sukphun & Chaweewan Ponuansri & Worapong Wongarmat & Sureewan Sittijunda & Kanathip Promnuan & Alissara Reungsang, 2023. "Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production," Energies, MDPI, vol. 16(23), pages 1-15, November.
    2. Dan Liu & Yiqun Kang & Heng Luo & Xiaotong Ji & Kan Cao & Hengrui Ma, 2023. "A Grid Status Analysis Method with Large-Scale Wind Power Access Using Big Data," Energies, MDPI, vol. 16(12), pages 1-12, June.
    3. Arika Bridhikitti & Jutamas Kaewsuk & Netiya Karaket & Richard Friend & Brett Sallach & James P. J. Chong & Kelly R. Redeker, 2023. "Balancing Agriculture and Industry through Waste Utilization for Sugarcane Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    2. Gabisa, Elias W. & Gheewala, Shabbir H., 2020. "Can substitution of imported gasoline by locally produced molasses ethanol in Ethiopia be sustainable? An eco-efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. López-Ortega, Mónica G. & Guadalajara, Yatzil & Junqueira, Tassia L. & Sampaio, Isabelle L.M. & Bonomi, Antonio & Sánchez, Arturo, 2021. "Sustainability analysis of bioethanol production in Mexico by a retrofitted sugarcane industry based on the Brazilian expertise," Energy, Elsevier, vol. 232(C).
    4. García-Bustamante Carlos Alberto & Zepeda-Pirrón Manuel & Armendáriz-Arnez Cynthia & Aguilar-Rivera Noé, 2018. "Development of indicators for the sustainability of the sugar industry," Environmental & Socio-economic Studies, Sciendo, vol. 6(4), pages 22-38, December.
    5. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    6. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    7. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    8. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    9. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    10. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    11. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    12. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    13. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    14. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    15. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    16. Wang, Qiang, 2011. "Time for commercializing non-food biofuel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 621-629, January.
    17. Moraes, Marcia A.F.D. & Nassar, Andre M. & Moura, Paula & Leal, Rodrigo L.V. & Cortez, L.A.B., 2014. "Jet biofuels in Brazil: Sustainability challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 716-726.
    18. Takahiro Nakashima & Keiichiro Ueno & Eisuke Fujita & Shoko Ishikawa, 2020. "Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate," Energies, MDPI, vol. 13(17), pages 1-17, August.
    19. Marcos Adami & Bernardo Friedrich Theodor Rudorff & Ramon Morais Freitas & Daniel Alves Aguiar & Luciana Miura Sugawara & Marcio Pupin Mello, 2012. "Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil," Sustainability, MDPI, vol. 4(4), pages 1-12, April.
    20. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9515-:d:1004300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.