IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp847-863.html
   My bibliography  Save this article

Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass

Author

Listed:
  • Sastre, Carlos M.
  • Carrasco, Juan
  • Barro, Ruth
  • González-Arechavala, Yolanda
  • Maletta, Emiliano
  • Santos, Ana M.
  • Ciria, Pilar

Abstract

The use of Life Cycle Assessment (LCA) as an environmental tool to evaluate the sustainability of different bioenergy pathways has become a common practice since the European Renewable Energy Directive was published in 2009. In the evaluation of bioenergy produced out from dedicated energy crops, nitrogen fertilizer production and use are commonly identified as the most important contributors to fossil energy consumption and to several environmental impacts categories including Global Warming Potential. In considering the impacts produced by the nitrogen fertilization of energy crops and in addition to the effects of fertilization schemes on the biomass yield, more attention should be paid to the changes in soil nitrogen to know if fertilization doses and application schemes are sufficient enough to maintain soil nitrogen stocks and ensure that soil quality is preserved for future years. To this aim, in this work soil nitrogen balance is used as an indicator to estimate the evolution of soil nitrogen stocks and complement LCA calculations. In this paper, the effects of three nitrogen top fertilization doses (null, 30 and 80kgN/(hay)) used for rye cultivation are compared when ry is grown as a dedicated energy crop for electricity generation under the Spanish province of Soria conditions. A LCA was carried out using experimental crop testing results and a centralised (25MWe) straw power plant data in combination with soil nitrogen balance obtained in each of the experimental crop trials. After that, the LCA results were compared with those obtained when electricity is generated from natural gas in Spanish power plants. According to the average calculations, each additional kgN/(hay) applied in top fertilization produces a reduction of 0.18% on GHG savings with respect to natural gas electricity, as well as a worsening in the energy balance of 0.00084TJ fossil energy per TJ of electricity generated but reduces soil nitrogen deficit in 0.43kgN/(hay). For top fertilization doses of 80kgN/(hay) the average GHG savings with respect to natural gas were 63.7% and the average non-renewable energy consumption was 6, 4 times less for the bioenergy system than for natural gas. Fossil energy accounted for more than 95% of total non-renewable energy in this calculation. This work evidences that determinate biomass growing conditions associated to high GHG savings and improved energy balances may cause detrimental effects for soil fertility due to considerable associated negative soil nitrogen balances. This finding suggests the convenience to include the soil nitrogen balance as a complementary indicator for bioenergy LCA calculations.

Suggested Citation

  • Sastre, Carlos M. & Carrasco, Juan & Barro, Ruth & González-Arechavala, Yolanda & Maletta, Emiliano & Santos, Ana M. & Ciria, Pilar, 2016. "Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass," Applied Energy, Elsevier, vol. 179(C), pages 847-863.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:847-863
    DOI: 10.1016/j.apenergy.2016.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Garofalo, Pasquale & Delivand, Mitra Kami, 2015. "Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective," Applied Energy, Elsevier, vol. 154(C), pages 891-899.
    2. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    3. Njakou Djomo, S. & Witters, N. & Van Dael, M. & Gabrielle, B. & Ceulemans, R., 2015. "Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies," Applied Energy, Elsevier, vol. 154(C), pages 122-130.
    4. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    5. Hennecke, Anna M. & Faist, Mireille & Reinhardt, Jürgen & Junquera, Victoria & Neeft, John & Fehrenbach, Horst, 2013. "Biofuel greenhouse gas calculations under the European Renewable Energy Directive – A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels," Applied Energy, Elsevier, vol. 102(C), pages 55-62.
    6. Narain, Maharaj & Singh, B. P. N., 1988. "Energy profile of a seed-processing plant," Applied Energy, Elsevier, vol. 30(3), pages 227-234.
    7. Keller, Heiko & Rettenmaier, Nils & Reinhardt, Guido Andreas, 2015. "Integrated life cycle sustainability assessment – A practical approach applied to biorefineries," Applied Energy, Elsevier, vol. 154(C), pages 1072-1081.
    8. Sastre, C.M. & González-Arechavala, Y. & Santos, A.M., 2015. "Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability," Applied Energy, Elsevier, vol. 154(C), pages 900-911.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    2. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    3. Maj, Grzegorz & Krzaczek, Paweł & Stamirowska-Krzaczek, Ewa & Lipińska, Halina & Kornas, Rafał, 2019. "Assessment of energy and physicochemical biomass properties of selected forecrop plant species," Renewable Energy, Elsevier, vol. 143(C), pages 520-529.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sastre, C.M. & González-Arechavala, Y. & Santos, A.M., 2015. "Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability," Applied Energy, Elsevier, vol. 154(C), pages 900-911.
    2. Song, Qingbin & Wang, Zhishi & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Liu, Gang, 2018. "Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2450-2459.
    3. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    6. Xiaoyong CAO & Chih-Chun KUNG & Yuelong WANG, 2017. "An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(12), pages 569-578.
    7. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    8. Garcia, Rita & Marques, Pedro & Freire, Fausto, 2014. "Life-cycle assessment of electricity in Portugal," Applied Energy, Elsevier, vol. 134(C), pages 563-572.
    9. Sigurjonsson, Hafthor Ægir & Elmegaard, Brian & Clausen, Lasse Røngaard & Ahrenfeldt, Jesper, 2015. "Climate effect of an integrated wheat production and bioenergy system with Low Temperature Circulating Fluidized Bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 511-520.
    10. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    11. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    12. Christian Moretti & Blanca Corona & Robert Edwards & Martin Junginger & Alberto Moro & Matteo Rocco & Li Shen, 2020. "Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling," Energies, MDPI, vol. 13(14), pages 1-24, July.
    13. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    14. Lilianna Głąb & Józef Sowiński, 2019. "Sustainable Production of Sweet Sorghum as a Bioenergy Crop Using Biosolids Taking into Account Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    15. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    16. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    17. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    18. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    19. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    20. Obnamia, Jon Albert & Dias, Goretty M. & MacLean, Heather L. & Saville, Bradley A., 2019. "Comparison of U.S. Midwest corn stover ethanol greenhouse gas emissions from GREET and GHGenius," Applied Energy, Elsevier, vol. 235(C), pages 591-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:847-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.