IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp636-648.html
   My bibliography  Save this article

Carbon footprinting of electronic products

Author

Listed:
  • Vasan, Arvind
  • Sood, Bhanu
  • Pecht, Michael

Abstract

In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the integration of CF into products’ supply chains. A case study on commercial- and military-grade DC–DC buck converters demonstrating the recommended approach is presented.

Suggested Citation

  • Vasan, Arvind & Sood, Bhanu & Pecht, Michael, 2014. "Carbon footprinting of electronic products," Applied Energy, Elsevier, vol. 136(C), pages 636-648.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:636-648
    DOI: 10.1016/j.apenergy.2014.09.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914010228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Chiun-Sin & Liou, Fen-May & Huang, Chih-Pin, 2011. "Grey forecasting model for CO2 emissions: A Taiwan study," Applied Energy, Elsevier, vol. 88(11), pages 3816-3820.
    2. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    3. Jens Malmodin & Åsa Moberg & Dag Lundén & Göran Finnveden & Nina Lövehagen, 2010. "Greenhouse Gas Emissions and Operational Electricity Use in the ICT and Entertainment & Media Sectors," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 770-790, October.
    4. Glen P. Peters & Gregg Marland & Corinne Le Quéré & Thomas Boden & Josep G. Canadell & Michael R. Raupach, 2012. "Rapid growth in CO2 emissions after the 2008–2009 global financial crisis," Nature Climate Change, Nature, vol. 2(1), pages 2-4, January.
    5. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    6. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
    7. J. C. Minx & T. Wiedmann & R. Wood & G. P. Peters & M. Lenzen & A. Owen & K. Scott & J. Barrett & K. Hubacek & G. Baiocchi & A. Paul & E. Dawkins & J. Briggs & D. Guan & S. Suh & F. Ackerman, 2009. "Input-Output Analysis And Carbon Footprinting: An Overview Of Applications," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 187-216.
    8. Malina, Robert & McConnachie, Dominic & Winchester, Niven & Wollersheim, Christoph & Paltsev, Sergey & Waitz, Ian A., 2012. "The impact of the European Union Emissions Trading Scheme on US aviation," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 36-41.
    9. Jenkins, David & Newborough, Marcus, 2007. "An approach for estimating the carbon emissions associated with office lighting with a daylight contribution," Applied Energy, Elsevier, vol. 84(6), pages 608-622, June.
    10. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
    11. Bush, Ruth & Jacques, David A. & Scott, Kate & Barrett, John, 2014. "The carbon payback of micro-generation: An integrated hybrid input–output approach," Applied Energy, Elsevier, vol. 119(C), pages 85-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    2. Donateo, Teresa & Ficarella, Antonio & Spedicato, Luigi & Arista, Alessandro & Ferraro, Marco, 2017. "A new approach to calculating endurance in electric flight and comparing fuel cells and batteries," Applied Energy, Elsevier, vol. 187(C), pages 807-819.
    3. Ut-Tha Veenarat, 2023. "Pioneering Eco-Cart: Carbon Reduction Solutions for Thai Online Shoppers," Management & Marketing, Sciendo, vol. 18(4), pages 515-536, December.
    4. Florentin Salomez & Hugo Helbling & Morgan Almanza & Ulrich Soupremanien & Guillaume Viné & Adrien Voldoire & Bruno Allard & Hamid Ben-Ahmed & Daniel Chatroux & Antoine Cizeron & Mylène Delhommais & M, 2024. "State of the Art of Research towards Sustainable Power Electronics," Sustainability, MDPI, vol. 16(5), pages 1-23, March.
    5. Giovanni Andrés Quintana-Pedraza & Sara Cristina Vieira-Agudelo & Nicolás Muñoz-Galeano, 2019. "A Cradle-to-Grave Multi-Pronged Methodology to Obtain the Carbon Footprint of Electro-Intensive Power Electronic Products," Energies, MDPI, vol. 12(17), pages 1-16, August.
    6. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    7. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    8. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    2. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    3. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    4. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    5. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    6. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    7. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    8. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    9. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    10. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    11. Jihwan Yeon & Seoki Lee & Phillip M Jolly & Anna S Mattila, 2023. "The impact of environmental management on firm performance in the U.S. lodging REITs: The moderating role of outside board of directors," Tourism Economics, , vol. 29(2), pages 513-532, March.
    12. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    13. Tao, Miaomiao, 2024. "Dynamics between electric vehicle uptake and green development: Understanding the role of local government competition," Transport Policy, Elsevier, vol. 146(C), pages 227-240.
    14. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    15. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    16. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    17. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    18. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    19. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    20. Xindong Wang & Chun Yan & Wei Liu & Xinhong Liu, 2022. "Research on Carbon Emissions Prediction Model of Thermal Power Plant Based on SSA-LSTM Algorithm with Boiler Feed Water Influencing Factors," Sustainability, MDPI, vol. 14(23), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:636-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.