IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i11p1760-1768.html
   My bibliography  Save this article

Impact of global warming on cowpea bean cultivation in northeastern Brazil

Author

Listed:
  • Silva, Vicente de P.R.
  • Campos, João H.B.C.
  • Silva, Madson T.
  • Azevedo, Pedro V.

Abstract

This study evaluated the effects of climate change on cowpea bean crop grown in northeastern Brazil based on the reports of the Intergovernmental Panel on Climate Change (IPCC). The water balance model combined with Geographic Information System techniques was used to identify regional areas where the cowpea bean crop will suffer yield reduction due to climate changes. Model input variables were: rainfall, crop coefficients, potential evapotranspiration and duration of the crop cycle. A limit value of 0.5 was adopted for the water requirement satisfaction index (WRSI), being the ratio of actual to maximum evapotranspiration. The acceptable seeding date was defined as the date at which the water balance simulation presented a WRSI value greater than the limit value, with a frequency of at least 80%. An increase in air temperature will cause a significant reduction in the areas currently favorable to cowpea bean crop growth in northeastern Brazil, and it is recommended that bean varieties better suited to high-temperature conditions should be planted.

Suggested Citation

  • Silva, Vicente de P.R. & Campos, João H.B.C. & Silva, Madson T. & Azevedo, Pedro V., 2010. "Impact of global warming on cowpea bean cultivation in northeastern Brazil," Agricultural Water Management, Elsevier, vol. 97(11), pages 1760-1768, November.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1760-1768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00203-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, James W., 2002. "Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges," Agricultural Systems, Elsevier, vol. 74(3), pages 309-330, December.
    2. Harmsen, Eric W. & Miller, Norman L. & Schlegel, Nicole J. & Gonzalez, J.E., 2009. "Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico," Agricultural Water Management, Elsevier, vol. 96(7), pages 1085-1095, July.
    3. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    4. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Burney & Daniele Cesano & Jarrod Russell & Emilio Rovere & Thais Corral & Nereide Coelho & Laise Santos, 2014. "Climate change adaptation strategies for smallholder farmers in the Brazilian Sertão," Climatic Change, Springer, vol. 126(1), pages 45-59, September.
    2. Justino, Ludmilla Ferreira & Alves Júnior, José & Battisti, Rafael & Heinemann, Alexandre Bryan & Leite, Caio Vinicius & Evangelista, Adão Wagner Pêgo & Casaroli, Derblai, 2019. "Assessment of economic returns by using a central pivot system to irrigate common beans during the rainfed season in Central Brazil," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Ashley R. Coles & Christopher A. Scott, 2009. "Vulnerability and adaptation to climate change and variability in semi‐arid rural southeastern Arizona, USA," Natural Resources Forum, Blackwell Publishing, vol. 33(4), pages 297-309, November.
    3. Thennakoon, Jayanthi & Findlay, Christopher & Huang, Jikun & Wang, Jinxia, 2020. "Management adaptation to flood in Guangdong Province in China: Do property rights Matter?," World Development, Elsevier, vol. 127(C).
    4. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    5. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    6. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    7. Seydou Zakari & Germaine Ibro & Bokar Moussa & Tahirou Abdoulaye, 2022. "Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    8. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    9. Kwasi, Frimpong & Oosthuizen, Jacque & Etten, Eddie Van, 2014. "The Extent of Heat on Health and Sustainable Farming in Ghana –Bawku East," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(3).
    10. Simon Tilleard & James Ford, 2016. "Adaptation readiness and adaptive capacity of transboundary river basins," Climatic Change, Springer, vol. 137(3), pages 575-591, August.
    11. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    12. Tanimonure, Victoria Adeyemi, 2021. "Impact of Climate Adaptation Strategies on the Net Farm Revenue of Underutilized Indigenous Vegetables’ (UIVs) Production in Southwest Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315903, International Association of Agricultural Economists.
    13. Possenti, Silvia., 2012. "Rural development strategies as a path to decent work and reducing urban informal employment : the case of South Africa," ILO Working Papers 994790883402676, International Labour Organization.
    14. Sam Barrett, 2015. "Subnational Adaptation Finance Allocation: Comparing Decentralized and Devolved Political Institutions in Kenya," Global Environmental Politics, MIT Press, vol. 15(3), pages 118-139, August.
    15. Bishu, Kinfe & O'Reilly, Seamus & Lahiff, Edward & Steiner, Bodo, 2016. "Cattle farmers’ perceptions of risk and risk management strategies," MPRA Paper 74954, University Library of Munich, Germany.
    16. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    17. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    18. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    19. Mushtaq, Shahbaz & Cockfield, Geoff & White, Neil & Jakeman, Guy, 2014. "Modelling interactions between farm-level structural adjustment and a regional economy: A case of the Australian rice industry," Agricultural Systems, Elsevier, vol. 123(C), pages 34-42.
    20. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1760-1768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.