IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005857.html
   My bibliography  Save this article

Drought-induced stress on rainfed and irrigated agriculture: Insights from multi-source satellite-derived ecological indicators

Author

Listed:
  • Chen, Yanan
  • Wang, Ying
  • Wu, Chaoyang
  • Rosa Ferraz Jardim, Alexandre Maniçoba da
  • Fang, Meihong
  • Yao, Li
  • Liu, Guihua
  • Xu, Qiuyi
  • Chen, Lintao
  • Tang, Xuguang

Abstract

The increasing frequency and severity of droughts, driven by rising global temperatures, are impacting crop yields. Elucidating the response of agricultural ecosystems to droughts under different management practices is vital for food security that supports the United Nations Sustainable Development Goal 2 for zero hunger. Our study revisited the spatio-temporal evolution of record-breaking drought event of 2012 in the continental United States by using a 3-month Standard Precipitation Evapotranspiration Index (SPEI3), and analyzed the impacts of such drought based on three satellite-based ecological metrics, including structural metric (LAI) and physiological metrics (GPP, GOSIF) across the irrigated and rainfed croplands, respectively. Generally, these metrics exhibited obvious seasonal dynamics, and successfully captured the drought-induced stress on agriculture in 2012. In rainfed croplands, LAI was more sensitive to drought compared to the other two metrics. Specifically, during the 2012 drought, LAI in rainfed fields was below the multi-year average at approximately day of year (DOY) 161, while GPP and GOSIF began at about DOY 177. By contrast, LAI and GPP simultaneously captured the negative anomalies in irrigated croplands at approximately DOY 169. Compared to the irrigated cropland, the rainfed cropland showed larger cumulative decreases in LAI, GPP, and GOSIF from June to September 2012 by about 3.64, 12.92 g C m−2, and 0.55 W m−2 μm−1 sr−1, respectively. Spatially, all negative anomalies increased throughout the growing season of both rainfed and irrigated croplands in the continental United States. The percentage of negative anomalies in irrigated fields was lower than in rainfed fields during this period. In this study, we illustrated that irrigation plays an important role in mitigating meteorological droughts in agroecosystems as well as providing safeguards for human food supply.

Suggested Citation

  • Chen, Yanan & Wang, Ying & Wu, Chaoyang & Rosa Ferraz Jardim, Alexandre Maniçoba da & Fang, Meihong & Yao, Li & Liu, Guihua & Xu, Qiuyi & Chen, Lintao & Tang, Xuguang, 2025. "Drought-induced stress on rainfed and irrigated agriculture: Insights from multi-source satellite-derived ecological indicators," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005857
    DOI: 10.1016/j.agwat.2024.109249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doughty, Russell & Xiao, Xiangming & Wu, Xiaocui & Zhang, Yao & Bajgain, Rajen & Zhou, Yuting & Qin, Yuanwei & Zou, Zhenhua & McCarthy, Heather & Friedman, Jack & Wagle, Pradeep & Basara, Jeff & Stein, 2018. "Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA," Agricultural Water Management, Elsevier, vol. 204(C), pages 47-59.
    2. Anwar Hussain & Khan Zaib Jadoon & Khalil Ur Rahman & Songhao Shang & Muhammad Shahid & Nuaman Ejaz & Himayatullah Khan, 2023. "Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 389-408, January.
    3. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    5. Christopher R. Schwalm & William R. L. Anderegg & Anna M. Michalak & Joshua B. Fisher & Franco Biondi & George Koch & Marcy Litvak & Kiona Ogle & John D. Shaw & Adam Wolf & Deborah N. Huntzinger & Kev, 2017. "Global patterns of drought recovery," Nature, Nature, vol. 548(7666), pages 202-205, August.
    6. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    7. Chen, Yanan & Ding, Zhi & Yu, Pujia & Yang, Hong & Song, Lisheng & Fan, Lei & Han, Xujun & Ma, Mingguo & Tang, Xuguang, 2022. "Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Chonggang Xu & Nate G. McDowell & Rosie A. Fisher & Liang Wei & Sanna Sevanto & Bradley O. Christoffersen & Ensheng Weng & Richard S. Middleton, 2019. "Increasing impacts of extreme droughts on vegetation productivity under climate change," Nature Climate Change, Nature, vol. 9(12), pages 948-953, December.
    9. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
    2. Lei Zhang & Wei Song & Wen Song, 2020. "Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia," IJERPH, MDPI, vol. 17(17), pages 1-24, August.
    3. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
    4. Mao, Hui & Sun, Zhenkai & Chai, Anyuan & Fang, Lan & Shi, Chaoqian, 2025. "Extreme Weather, agricultural insurance and farmer's climate adaptation technologies adoption in China," Ecological Economics, Elsevier, vol. 228(C).
    5. Geng, Guangpo & Yang, Rui & Chen, Qiuji & Deng, Tiantian & Yue, Meng & Zhang, Bao & Gu, Qian, 2023. "Tracking the influence of drought events on winter wheat using long-term gross primary production and yield in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Tugrul Varol & Ayhan Atesoglu & Halil Baris Ozel & Mehmet Cetin, 2023. "Copula-based multivariate standardized drought index (MSDI) and length, severity, and frequency of hydrological drought in the Upper Sakarya Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3669-3683, April.
    8. Sun, Tao & Zhang, Xinhua & Cai, Yujie & Yang, Chun & Gao, Zhurui, 2025. "Response of gross primary productivity to flash droughts on the Qinghai-Tibetan Plateau," Ecological Modelling, Elsevier, vol. 500(C).
    9. Jun Yin & Zhe Yuan & Ting Li, 2021. "The Spatial-Temporal Variation Characteristics of Natural Vegetation Drought in the Yangtze River Source Region, China," IJERPH, MDPI, vol. 18(4), pages 1-24, February.
    10. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    11. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    12. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    13. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    14. William D. Nordhaus & Robert Mendelsohn, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Reply," American Economic Review, American Economic Association, vol. 89(4), pages 1046-1048, September.
    15. repec:ags:aaea22:335489 is not listed on IDEAS
    16. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    17. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    18. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    20. Yanqun Ren & Jinping Liu & Patrick Willems & Tie Liu & Quoc Bao Pham, 2023. "Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm," Land, MDPI, vol. 12(10), pages 1-18, September.
    21. Mukherjee, Manisha, 2022. "Climate change and migration: Reviewing the role of access to agricultural adaptation measures," MERIT Working Papers 2022-039, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.