IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v500y2025ics0304380024003417.html
   My bibliography  Save this article

Response of gross primary productivity to flash droughts on the Qinghai-Tibetan Plateau

Author

Listed:
  • Sun, Tao
  • Zhang, Xinhua
  • Cai, Yujie
  • Yang, Chun
  • Gao, Zhurui

Abstract

Flash droughts are expected to become the 'new normal' in the future, significantly affecting the carbon dynamics of terrestrial ecosystems. The rapid onset, swift intensification, and short duration of flash droughts make their impact on terrestrial carbon dynamics challenging to capture. To date, the response pattern of regional terrestrial carbon dynamics to flash droughts on the Qinghai-Tibetan plateau (QTP) remains unclear. Utilizing ERA5-Land soil moisture data, we identified numerous sub-seasonal flash drought events on the QTP by analyzing the decline rate of soil moisture and drought duration. Based on the dynamics of Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity (GPP) changes observed during flash droughts, we proposed the Response Intensity Index (RII) to quantify the intensity of GPP responses to these events. Additionally, through partial correlation analysis, we examined the effects of climatic factors on GPP during flash droughts. We found that areas with high frequencies of flash droughts are distributed in the northern, eastern, and southeastern margins of the QTP (more than 1.6 times/year), while areas with low frequencies are located in the western region (less than 0.4 times/year). GPP significantly responded to 50.36% of the flash drought events on the QTP. The intensity of GPP response varied significantly among vegetation types, with meadow GPP exhibiting the highest responsiveness (RII of 1.867) and forest GPP the lowest (RII of 1.585). Climatic factors exerted significant effects on GPP during flash droughts, with variations observed across different vegetation types. Differences in GPP response to flash droughts may be attributed to vegetation type, climatic conditions, and the frequency and duration of flash droughts. These findings provide valuable insights for managing carbon sequestration in ecosystems, offering essential guidance for future environmental management, climate change adaptation, and ecological conservation.

Suggested Citation

  • Sun, Tao & Zhang, Xinhua & Cai, Yujie & Yang, Chun & Gao, Zhurui, 2025. "Response of gross primary productivity to flash droughts on the Qinghai-Tibetan Plateau," Ecological Modelling, Elsevier, vol. 500(C).
  • Handle: RePEc:eee:ecomod:v:500:y:2025:i:c:s0304380024003417
    DOI: 10.1016/j.ecolmodel.2024.110953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    2. Yamin Qing & Shuo Wang & Brian C. Ancell & Zong-Liang Yang, 2022. "Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zhou, Junzhi & Zhang, Ting & Li, Jianzhu & Feng, Ping, 2024. "Simulation of gross primary productivity and impact of drought in Liulin watershed of Taihang mountains over 2000–2020," Ecological Modelling, Elsevier, vol. 489(C).
    4. Holtmann, Anne & Huth, Andreas & Bohn, Friedrich & Fischer, Rico, 2024. "Assessing the impact of multi-year droughts on German forests in the context of increased tree mortality," Ecological Modelling, Elsevier, vol. 492(C).
    5. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    6. Banerjee, Onil & Bark, Rosalind & Connor, Jeff & Crossman, Neville D., 2013. "An ecosystem services approach to estimating economic losses associated with drought," Ecological Economics, Elsevier, vol. 91(C), pages 19-27.
    7. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    8. Chonggang Xu & Nate G. McDowell & Rosie A. Fisher & Liang Wei & Sanna Sevanto & Bradley O. Christoffersen & Ensheng Weng & Richard S. Middleton, 2019. "Increasing impacts of extreme droughts on vegetation productivity under climate change," Nature Climate Change, Nature, vol. 9(12), pages 948-953, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanan & Wang, Ying & Wu, Chaoyang & Rosa Ferraz Jardim, Alexandre Maniçoba da & Fang, Meihong & Yao, Li & Liu, Guihua & Xu, Qiuyi & Chen, Lintao & Tang, Xuguang, 2025. "Drought-induced stress on rainfed and irrigated agriculture: Insights from multi-source satellite-derived ecological indicators," Agricultural Water Management, Elsevier, vol. 307(C).
    2. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
    4. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Hu, Chen & She, Dunxian & Wang, Gangsheng & Zhang, Liping & Jing, Zhaoxia & Song, Zhihong & Xia, Jun, 2025. "Unravelling spatiotemporal propagation processes among meteorological, soil, and evaporative flash droughts from a three-dimensional perspective," Agricultural Water Management, Elsevier, vol. 308(C).
    6. Lai, Chengguang & Sun, Haowei & Wu, Xushu & Li, Jun & Wang, Zhaoli & Tong, Hongfu & Feng, Jiajin, 2024. "Water availability may not constrain vegetation growth in Northern Hemisphere," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    8. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. repec:plo:pone00:0185481 is not listed on IDEAS
    10. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    11. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    12. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    13. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    14. Luong, Tuan Anh & Nguyen, Manh-Hung & Truong, N.T. Khuong & Le, Kien, 2023. "Rainfall variability and internal migration: The importance of agriculture linkage and gender inequality," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 326-336.
    15. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    16. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    17. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    18. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Bark, Rosalind H. & Colloff, Matthew J. & Hatton MacDonald, Darla & Pollino, Carmel A. & Jackson, Sue & Crossman, Neville D., 2016. "Integrated valuation of ecosystem services obtained from restoring water to the environment in a major regulated river basin," Ecosystem Services, Elsevier, vol. 22(PB), pages 381-391.
    20. Shahzada Adnan & Kalim Ullah, 2020. "Development of drought hazard index for vulnerability assessment in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2989-3010, September.
    21. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:500:y:2025:i:c:s0304380024003417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.