IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics037837742200573x.html
   My bibliography  Save this article

Modeling moisture redistribution from selective non-uniform application of biochar on Palouse hills

Author

Listed:
  • O’Keeffe, Adam
  • Shrestha, Dev
  • Dunkel, Chad
  • Brooks, Erin
  • Heinse, Robert

Abstract

Precision agriculture is most effective in areas where significant in-field variation occurs. The Palouse region of the Pacific Northwest in the US, a vast area of undulating fertile farmland, has relatively high in-field variation in water retention and crop yield due to regional topography and uneven soil erosion. The regional agricultural systems depend on the soil at or near field capacity towards the end of a wet spring to support crops throughout the summer drought period. Dryland agricultural systems and high in-field variation and changing climate make water retention management practices throughout the region critical. A finite element vadose zone transport model was developed and used to understand the benefits of the targeted application of biochar on water retention and water redistribution in a representative hillslope. The model utilizes measured soil hydraulic properties to predict soil moisture distribution over the dry season. A Redwood Sawdust and Wheat Straw biochar was amended at 4% and 7% concentrations by mass. Biochar amended soils showed an increase in water retention and apparent reduction in unsaturated hydraulic conductivity as the soil approached saturated conditions. After two months of bare field evaporation, the model showed that biochar impacts water redistribution in the soil profile, contributing to positive and negative changes and a net increase in water retention. Model outputs with biochar showed increased retention in and around the amendment area, although the magnitude between outputs varied, with some samples showing minimal effectiveness. Despite the differences in magnitude with targeted biochar amendment, these results indicate that biochar can change water redistribution (up to 0.5%) in a soil profile. Additionally, the developed model shows promise as a field and regional level management tool to determine the best return on investment from biochar application when applied in a targeted manner.

Suggested Citation

  • O’Keeffe, Adam & Shrestha, Dev & Dunkel, Chad & Brooks, Erin & Heinse, Robert, 2023. "Modeling moisture redistribution from selective non-uniform application of biochar on Palouse hills," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s037837742200573x
    DOI: 10.1016/j.agwat.2022.108026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200573X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Yantai Gan & Chang Liang & Qiang Chai & Reynald L. Lemke & Con A. Campbell & Robert P. Zentner, 2014. "Improving farming practices reduces the carbon footprint of spring wheat production," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    3. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Sun, Xiaolu & Qian, Linjun & Cao, Yidan & Wang, Minghui & Li, Ning & Pang, Ruyue & Si, Tong & Yu, Xiaona & Zhang, Xiaojun & Zuza, Emmanuel Junior & Zou, Xiaoxia, 2024. "Exploration of the optimal low-carbon peanut rotation system in South China," Agricultural Systems, Elsevier, vol. 221(C).
    4. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    5. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    6. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    7. Meiting Li & Keqin Wang & Xiaoyi Ma & Mingsi Fan & Biyu Li & Yali Song, 2025. "Relationship Between Soil Aggregate Stability and Associated Carbon and Nitrogen Changes Under Different Ecological Construction Measures in the Karst Region of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-23, January.
    8. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    9. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    10. Ninghui Xie & Liangjie Sun & Tong Lu & Xi Zhang & Ning Duan & Wei Wang & Xiaolong Liang & Yuchuan Fan & Huiyu Liu, 2025. "Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon," Agriculture, MDPI, vol. 15(10), pages 1-14, May.
    11. Shang, Hua & Jiang, Li & Kumar Mangla, Sachin & Pan, Xiongfeng & Song, Malin, 2024. "Examining the role of national governance capacity in building the global low-carbon agricultural supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    12. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    13. Carine Naba & Hiroshi Ishidaira & Jun Magome & Kazuyoshi Souma, 2024. "Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    14. Pradhan, Amaresh & Rana, K.S. & Choudhary, Anil K. & Bana, R.S. & Thapa, Shobit & Dash, Amit K. & Singh, Jyoti P. & Kumar, Amit & Harish, M.N. & Hasanain, Mohammad & Kumar, Adarsh, 2025. "Dual-crop basis residue-retained bed-planting and zinc fertilization lead to improved food-energy-water-carbon nexus in pearl millet-wheat cropping system in semi-arid agro-ecologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    15. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    16. Yongkang Wang & Junfeng Dai & Fan Jiang & Zupeng Wan & Shuaipu Zhang, 2025. "Coupled Effects of Water Depth, Vegetation, and Soil Properties on Soil Organic Carbon Components in the Huixian Wetland of the Li River Basin," Land, MDPI, vol. 14(3), pages 1-20, March.
    17. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    18. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    19. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    20. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s037837742200573x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.