IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p796-d1111843.html
   My bibliography  Save this article

Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils

Author

Listed:
  • Jianghua Tang

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Lili Su

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Yanfei Fang

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Chen Wang

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Linyi Meng

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Jiayong Wang

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Junyao Zhang

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

  • Wenxiu Xu

    (College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

Excessive nitrogen fertilizer usage in agricultural often leads to negative ecological and production gains. Alterations in the physical and chemical properties and microbial community structure of agricultural soils are both the cause and consequence of this process. This study explored the perturbation of soil properties and microorganisms in agricultural soils by different nitrogen levels. Soil total nitrogen, total phosphorus, and total potassium decreased in the shallow soil layer with decreasing nitrogen. Changes in nitrogen affected soil organic matter, pH, bulk density, and water content. However, a moderate reduction in nitrogen did not cause significant yield loss; the increased nitrogen use efficiency was the main reason, attributed to the available phosphorus and potassium. Short-term changes in nitrogen had limited effects on soil microbial community structure. Bacteria were more susceptible to perturbation by nitrogen changes. Nitrogen reduction increased the relative abundance of MND1 (1.21%), RB41 (1.96%), and Sphingomonas (0.72%) and decreased Dongia (0.3%), Chaetomium (0.41%), and Penicillium (0.5%). Nitrogen reduction significantly increased the bacteria functional composition of aerobic ammonia oxidation (4.20%) and nitrification (4.10%) and reduced chemoheterotrophy (2.70%) and fermentation (4.08%). Available phosphorus specifically drove bacterial community structure variation in the shallow soil layers of moderate nitrogen reduction treatments. Steroidobacter, RB41, Gemmatimonas, Ellin6067, Haliangium, and Sphingomonas were the main component nodes in this community structure. These results provide insights into the study of nitrogen and microorganisms in agricultural soils.

Suggested Citation

  • Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:796-:d:1111843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Esmaeil Zangani & Kamran Afsahi & Farid Shekari & Eileen Mac Sweeney & Andrea Mastinu, 2021. "Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed ( Brassica napus L.)," Agriculture, MDPI, vol. 11(6), pages 1-10, May.
    3. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    4. Shanshan Liu & Tianling Qin & Biqiong Dong & Xuan Shi & Zhenyu Lv & Guangjun Zhang, 2021. "The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    5. Yemin Lan & Qiong Wang & James R Cole & Gail L Rosen, 2012. "Using the RDP Classifier to Predict Taxonomic Novelty and Reduce the Search Space for Finding Novel Organisms," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    2. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    3. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    4. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    5. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    6. Manal A. Alnaimy & Sahar A. Shahin & Ahmed A. Afifi & Ahmed A. Ewees & Natalia Junakova & Magdalena Balintova & Mohamed Abd Elaziz, 2022. "Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    7. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    8. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    9. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    10. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    11. Mojtaba Dolatkordestani & Mansour Taghvaei & Andrea Mastinu, 2023. "Effective Treatments for the Successful Establishment of Milkweed ( Calotropis procera L.) under Water Deficit," Land, MDPI, vol. 12(11), pages 1-15, October.
    12. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    13. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Yue Zhang & Guihua Liu & Zhixing Ma & Xin Deng & Jiahao Song & Dingde Xu, 2022. "The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    15. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    16. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    18. Shuai Wang & Nan Wang & Junping Xu & Xi Zhang & Sen Dou, 2019. "Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation," Sustainability, MDPI, vol. 11(17), pages 1-12, September.
    19. Blignaut, James & Meissner, Heinz & Smith, Hendrik & du Toit, Linde, 2022. "An integrative bio-physical approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A system dynamics approach," Agricultural Systems, Elsevier, vol. 195(C).
    20. Duyen Minh Pham & Arata Katayama, 2018. "Humin as an External Electron Mediator for Microbial Pentachlorophenol Dechlorination: Exploration of Redox Active Structures Influenced by Isolation Methods," IJERPH, MDPI, vol. 15(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:796-:d:1111843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.