IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics0378377421001359.html
   My bibliography  Save this article

Water footprints of bioethanol cropping systems in Uruguay

Author

Listed:
  • Bustamante-Silveira, Mauricio
  • Siri-Prieto, Guillermo
  • Carrasco-Letelier, Leonidas

Abstract

Bioenergy is the most widely used type of renewable energy. However, an assessment of water consumption and pollution is necessary to determine the water demand of this energy source. The Uruguayan public policy to decarbonize energy sources highlighted the use of bioenergy. In this regard, we analyzed the water footprint (WF) of four bioethanol cropping systems: (1) maize-wheat-sorghum rotation without harvested crop residues (MWS), (2) maize-wheat-sorghum rotation with harvested crop residues (MWS-R), (3) continuous sweet sorghum (Ss), and (4) switchgrass (Sw). In order to assess the WF of bioethanol production, green (WFgreen) and gray (WFgray) components of crop production were calculated by considering the different volumes of water involved in evaporation, rainfall, and fertilizer pollution. Annual cropping systems (i.e., MWS, MWS-R, Ss) had the largest WFs (23.1–30.9 m3Lethanol−1). Switchgrass had the lowest values per hectare and per liter of ethanol (12,735 m3(ha yr)−1 and 3.8 m3Lethanol−1, respectively). The volume required to assimilate phosphorous (P) and nitrogen (N) fertilizers played a significant role in bioethanol cropping systems. In annual systems, WFgray was the main fraction (87%) of total WF (WFT). Averaged across all cropping systems, WFgray related to P was 13 times larger than WFgray related to N.

Suggested Citation

  • Bustamante-Silveira, Mauricio & Siri-Prieto, Guillermo & Carrasco-Letelier, Leonidas, 2021. "Water footprints of bioethanol cropping systems in Uruguay," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001359
    DOI: 10.1016/j.agwat.2021.106870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mesfin M. Mekonnen & Markus Pahlow & Maite M. Aldaya & Erika Zarate & Arjen Y. Hoekstra, 2015. "Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean," Sustainability, MDPI, vol. 7(2), pages 1-27, February.
    2. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    3. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    4. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    5. Zhong, Jia & Yu, T. Edward & Clark, Christopher D. & English, Burton C. & Larson, James A. & Cheng, Chu-Lin, 2018. "Effect of land use change for bioenergy production on feedstock cost and water quality," Applied Energy, Elsevier, vol. 210(C), pages 580-590.
    6. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    7. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    8. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    9. Montserrat Núñez & Stephan Pfister & Assumpció Antón & Pere Muñoz & Stefanie Hellweg & Annette Koehler & Joan Rieradevall, 2013. "Assessing the Environmental Impact of Water Consumption by Energy Crops Grown in Spain," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 90-102, February.
    10. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.
    2. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    3. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    4. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    5. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    6. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    7. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    8. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    9. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    10. Zhu, Yuli & Liang, Ji & Yang, Qing & Zhou, Hewen & Peng, Kun, 2019. "Water use of a biomass direct-combustion power generation system in China: A combination of life cycle assessment and water footprint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Mengran Fu & Bin Guo & Weijiao Wang & Juan Wang & Lihua Zhao & Jianlin Wang, 2019. "Comprehensive Assessment of Water Footprints and Water Scarcity Pressure for Main Crops in Shandong Province, China," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    12. Lei Yu & Benyou Jia & Shiqiang Wu & Xiufeng Wu & Peng Xu & Jiangyu Dai & Fangfang Wang & Liming Ma, 2019. "Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China," Sustainability, MDPI, vol. 11(21), pages 1-12, October.
    13. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    14. Bodini Antonio & Chiussi Sara & Donati Michele & Bellassen Valentin & Török Áron & Dries Lisbeth & Ćorić Dubravka Sinčić & Gauvrit Lisa & Tsakiridou Efthimia & Majewski Edward & Ristic Bojan & Stojano, 2021. "Water Footprint of Food Quality Schemes," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 145-160, December.
      • Antonio Bodini & Sara Chiussi & Michele Donati & Valentin Bellassen & Áron Török & Liesbeth Dries & Dubravka Sinčić Ćorić & Lisa Gauvrit & Efthimia Tsakiridou & Edward Majewski & Bojan Ristic & Zaklin, 2021. "Water Footprint of Food Quality Schemes," Post-Print hal-03267194, HAL.
    15. Traverso L. & Mazzoli E. & Miller C. & Pulighe G. & Perelli C. & Morese M. M. & Branca G., 2021. "Cost Benefit and Risk Analysis of Low iLUC Bioenergy Production in Europe Using Monte Carlo Simulation," Energies, MDPI, vol. 14(6), pages 1-18, March.
    16. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    17. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    18. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    19. Giorgia Giovannetti & Elisa Ticci, 2013. "Biofuel Development and Large-Scale Land Deals in Sub-Saharan Africa," Working Papers - Economics wp2013_27.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    20. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.