IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v60y1999i3p175-196.html
   My bibliography  Save this article

EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat

Author

Listed:
  • Cabelguenne, M.
  • Debaeke, P.
  • Bouniols, A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
  • Handle: RePEc:eee:agisys:v:60:y:1999:i:3:p:175-196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(99)00027-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    2. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    3. Kiniry, James R. & Major, D. J. & Izarralde, R. C. & Williams, J. R. & Gassman, Philip W. & Morrison, M. & Bergentine, R. & Zentner, R. P., 1995. "Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region," Staff General Research Papers Archive 894, Iowa State University, Department of Economics.
    4. Cabelguenne, M. & Jones, C. A. & Marty, J. R. & Dyke, P. T. & Williams, J. R., 1990. "Calibration and validation of EPIC for crop rotations in southern France," Agricultural Systems, Elsevier, vol. 33(2), pages 153-171.
    5. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    6. Cabelguenne, M. & Debaeke, Ph. & Puech, J. & Bosc, N., 1997. "Real time irrigation management using the EPIC-PHASE model and weather forecasts," Agricultural Water Management, Elsevier, vol. 32(3), pages 227-238, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    2. Kross, Angela & Lapen, David R. & McNairn, Heather & Sunohara, Mark & Champagne, Catherine & Wilkes, Graham, 2015. "Satellite and in situ derived corn and soybean biomass and leaf area index: Response to controlled tile drainage under varying weather conditions," Agricultural Water Management, Elsevier, vol. 160(C), pages 118-131.
    3. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    4. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    5. Debaeke, Philippe & Nolot, Jean-Marie & Raffaillac, Didier, 2006. "A rule-based method for the development of crop management systems applied to grain sorghum in south-western France," Agricultural Systems, Elsevier, vol. 90(1-3), pages 180-201, October.
    6. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    7. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    8. Marijn Velde & Francesco Tubiello & Anton Vrieling & Fayçal Bouraoui, 2012. "Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data," Climatic Change, Springer, vol. 113(3), pages 751-765, August.
    9. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    10. Ascough II, J.C. & Andales, A.A. & Sherrod, L.A. & McMaster, G.S. & Hansen, N.C. & DeJonge, K.C. & Fathelrahman, E.M. & Ahuja, L.R. & Peterson, G.A. & Hoag, D.L., 2010. "Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM," Agricultural Systems, Elsevier, vol. 103(8), pages 569-584, October.
    11. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    12. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    13. Choruma, Dennis Junior & Balkovic, Juraj & Pietsch, Stephan Alexander & Odume, Oghenekaro Nelson, 2021. "Using EPIC to simulate the effects of different irrigation and fertilizer levels on maize yield in the Eastern Cape, South Africa," Agricultural Water Management, Elsevier, vol. 254(C).
    14. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    15. Aboudrare, A. & Debaeke, P. & Bouaziz, A. & Chekli, H., 2006. "Effects of soil tillage and fallow management on soil water storage and sunflower production in a semi-arid Mediterranean climate," Agricultural Water Management, Elsevier, vol. 83(3), pages 183-196, June.
    16. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Dawes, Warrick, 2003. "Simulation of winter wheat yield and water use efficiency in the Loess Plateau of China using WAVES," Agricultural Systems, Elsevier, vol. 78(3), pages 355-367, December.
    17. J. García-López & Ignacio Lorite & R. García-Ruiz & J. Domínguez, 2014. "Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling," Climatic Change, Springer, vol. 124(1), pages 147-162, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    2. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    3. Pala, M. & Stockle, C. O. & Harris, H. C., 1996. "Simulation of durum wheat (Triticum turgidum ssp. durum) growth under different water and nitrogen regimes in a mediterranean environment using CropSyst," Agricultural Systems, Elsevier, vol. 51(2), pages 147-163, June.
    4. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    5. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    6. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    7. Saseendran, S.A. & Trout, T.J. & Ahuja, L.R. & Ma, L. & McMaster, G.S. & Nielsen, D.C. & Andales, A.A. & Chávez, J.L. & Ham, J., 2015. "Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment," Agricultural Systems, Elsevier, vol. 137(C), pages 191-205.
    8. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    9. Dore, T. & Sebillotte, M. & Meynard, J. M., 1997. "A diagnostic method for assessing regional variations in crop yield," Agricultural Systems, Elsevier, vol. 54(2), pages 169-188, June.
    10. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    11. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    12. Ahsan Raza & Hella Ahrends & Muhammad Habib-Ur-Rahman & Thomas Gaiser, 2021. "Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops," Land, MDPI, vol. 10(4), pages 1-35, April.
    13. Cavero, J. & Plant, R. E. & Shennan, C. & Williams, J. R. & Kiniry, J. R. & Benson, V. W., 1998. "Application of epic model to nitrogen cycling in irrigated processing tomatoes under different management systems," Agricultural Systems, Elsevier, vol. 56(4), pages 391-414, April.
    14. Jalota, S.K. & Kaur, Harsimran & Kaur, Samanpreet & Vashisht, B.B., 2013. "Impact of climate change scenarios on yield, water and nitrogen-balance and -use efficiency of rice–wheat cropping system," Agricultural Water Management, Elsevier, vol. 116(C), pages 29-38.
    15. Cavero, J. & Plant, R. E. & Shennan, C. & Friedman, D. B. & Williams, J. R. & Kiniry, J. R. & Benson, V. W., 1999. "Modeling nitrogen cycling in tomato-safflower and tomato-wheat rotations," Agricultural Systems, Elsevier, vol. 60(2), pages 123-135, May.
    16. Xu, Xu & Sun, Chen & Neng, Fengtian & Fu, Jing & Huang, Guanhua, 2018. "AHC: An integrated numerical model for simulating agroecosystem processes—Model description and application," Ecological Modelling, Elsevier, vol. 390(C), pages 23-39.
    17. Jean-Marc Boussard & Jean-Philippe Boussemart & Guillermo Flichman & Florence Jacquet & Henri-Bertrand Lefer, 1997. "The effects of the CAP reform on French crop-livestock farms. Technical changes and regional specialisation [Les effets de la réforme de la PAC sur les exploitations de grande culture]," Post-Print hal-02694550, HAL.
    18. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    19. Qureshi, Muhammad Ejaz & Arunakumaren, J. & Bajracharya, K. & Wegener, Malcolm K. & Qureshi, S.E. & Bristow, Keith L., 2002. "Economic and environmental impacts of groundwater management scenarios in Burdekin Delta," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125148, Australian Agricultural and Resource Economics Society.
    20. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:60:y:1999:i:3:p:175-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.