IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v147y2015icp21-33.html
   My bibliography  Save this article

Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?

Author

Listed:
  • Abi Saab, Marie Therese
  • Todorovic, Mladen
  • Albrizio, Rossella

Abstract

This work investigated the performance of AquaCrop and CropSyst in simulating barley growth under three water treatments (full irrigation, 50% irrigation and rainfed) and two nitrogen levels (high and low) with a particular attention to the influence of calibration year on the modelling results. Three years (2006–2008) of data from the experimental work carried out in Southern Italy were used. The models were calibrated for each of three years and then validated for two other years. The overall results pointed out that both models could be calibrated with data of one of any the three years and validated with all other data. Nevertheless, errors of estimate slightly changed in respect to the year of calibration and were sensitive, from one year to another, to weather conditions and different water and nitrogen regimes. The results indicated AquaCrop superior than CropSyst when the calibration was done on the basis of 2006 and 2008 data, whereas the models performed in a similar way when the calibration was done for 2007. In the case of final biomass, the relative RMSE was lower for AquaCrop (from 0.09 to 0.15) than for CropSyst (from 0.15 to 0.17). Similarly, in the case of final yield, the relative RMSE of AquaCrop was lower (from 0.11 to 0.17) than that of CropSyst (from 0.16 to 0.23). AquaCrop overestimated final biomass by 0.18 and 0.27tha−1 for 2006 and 2008 calibration year, respectively, and underestimated biomass by 1.02tha−1 when calibration was done on 2007 data. CropSyst underestimated biomass independently on the calibration year, from 0.83 to 1.26tha−1.

Suggested Citation

  • Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
  • Handle: RePEc:eee:agiwat:v:147:y:2015:i:c:p:21-33
    DOI: 10.1016/j.agwat.2014.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414002273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shrestha, Nirman & Raes, Dirk & Vanuytrecht, Eline & Sah, Shrawan Kumar, 2013. "Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling," Agricultural Water Management, Elsevier, vol. 122(C), pages 53-62.
    2. Pannkuk, C. D. & Stockle, C. O. & Papendick, R. I., 1998. "Evaluating CropSyst simulations of wheat management in a wheat-fallow region of the US pacific northwest," Agricultural Systems, Elsevier, vol. 57(2), pages 121-134, June.
    3. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    4. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    5. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    6. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    7. Singh, Anil Kumar & Tripathy, Rojalin & Chopra, Usha Kiran, 2008. "Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop," Agricultural Water Management, Elsevier, vol. 95(7), pages 776-786, July.
    8. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    9. Araya, A. & Habtu, Solomon & Hadgu, Kiros Meles & Kebede, Afewerk & Dejene, Taddese, 2010. "Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)," Agricultural Water Management, Elsevier, vol. 97(11), pages 1838-1846, November.
    10. Dechmi, F. & Skhiri, A., 2013. "Evaluation of best management practices under intensive irrigation using SWAT model," Agricultural Water Management, Elsevier, vol. 123(C), pages 55-64.
    11. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    12. Pala, M. & Stockle, C. O. & Harris, H. C., 1996. "Simulation of durum wheat (Triticum turgidum ssp. durum) growth under different water and nitrogen regimes in a mediterranean environment using CropSyst," Agricultural Systems, Elsevier, vol. 51(2), pages 147-163, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    2. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    3. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    4. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    6. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    8. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    9. Jalil, Atiqurrahman & Akhtar, Fazlullah & Awan, Usman Khalid, 2020. "Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan," Agricultural Water Management, Elsevier, vol. 240(C).
    10. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    11. Geneille E. Greaves & Yu-Min Wang, 2017. "Identifying Irrigation Strategies for Improved Agricultural Water Productivity in Irrigated Maize Production through Crop Simulation Modelling," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    12. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    2. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    3. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Tavakoli, Ali Reza & Mahdavi Moghadam, Mehran & Sepaskhah, Ali Reza, 2015. "Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran," Agricultural Water Management, Elsevier, vol. 161(C), pages 136-146.
    5. Kim, Daeha & Kaluarachchi, Jagath, 2015. "Validating FAO AquaCrop using Landsat images and regional crop information," Agricultural Water Management, Elsevier, vol. 149(C), pages 143-155.
    6. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    7. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    8. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    9. Jalota, S.K. & Singh, Sukhvinder & Chahal, G.B.S. & Ray, S.S. & Panigraghy, S. & Bhupinder-Singh & Singh, K.B., 2010. "Soil texture, climate and management effects on plant growth, grain yield and water use by rainfed maize-wheat cropping system: Field and simulation study," Agricultural Water Management, Elsevier, vol. 97(1), pages 83-90, January.
    10. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    11. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    12. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    13. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    15. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    16. Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
    17. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    18. A. Madani & A. Shirani-Rad & A. Pazoki & G. Nourmohammadi & R. Zarghami & A. Mokhtassi-Bidgoli, 2010. "The impact of source or sink limitations on yield formation of winter wheat (Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(5), pages 218-227.
    19. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    20. Dore, T. & Sebillotte, M. & Meynard, J. M., 1997. "A diagnostic method for assessing regional variations in crop yield," Agricultural Systems, Elsevier, vol. 54(2), pages 169-188, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:147:y:2015:i:c:p:21-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.