IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v205y2018icp63-71.html
   My bibliography  Save this article

Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models

Author

Listed:
  • Ahmadzadeh Araji, Hamidreza
  • Wayayok, Aimrun
  • Massah Bavani, Alireza
  • Amiri, Ebrahim
  • Abdullah, Ahmad Fikri
  • Daneshian, Jahanfar
  • Teh, C.B.S.

Abstract

Earth is faced with dramatic changes in the weather systems, which leads to climate change. Climate change affects water resources and crop production. In this study, five and seven general circulation models (GCMs) were respectively collected via the IPCC Fourth and Fifth Assessment Reports. Emission scenarios including B1, A1B, and A2 for AR4 and RCP2.6 and RCP8.5 for AR5 were applied to predict future climate change. The weighting method of mean observed temperature-precipitation (MOTP) was utilized to compute uncertainty related to different climate models. The scenario files made by ΔT and ΔP were applied to the downscaled model of LARS-WG to generate weighted multi-model ensemble means of temperature and precipitation for the period 2020–2039 centered on 2030s. These ensemble means were incorporated into the calibrated AquaCrop model to predict final yield and biomass. In this study, soybean data were applied for four different varieties under three irrigation treatments in field experiments carried out at Karaj Seed and Plant Improvement Institute in two successive years. However, the results of statistical analysis between the model output and observed data for all varieties and irrigation treatments in the calibration year (2010) and validation year (2011) were the same at the 95% confidence level. It is suggested that AquaCrop is a valid model to predict yield and biomass for the study area in the future. Furthermore, comparing future climatic variables to the historical period during the soybean growing season showed enhancement of these variables by the 2030s. The amplitude change of temperature was larger in AR5, whereas the amplitude change of precipitation and CO2 were larger in AR4. The soybean yield and biomass increased for all treatments in the 2030 s with positive correlation with the climatic variables. The maximum temperature represented the most significant correlation with yield and biomass for almost all treatments. Finally, soybeans might achieve an optimal threshold temperature in the future, leading to yield increases in the 2030s.

Suggested Citation

  • Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
  • Handle: RePEc:eee:agiwat:v:205:y:2018:i:c:p:63-71
    DOI: 10.1016/j.agwat.2018.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418304153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shrestha, Nirman & Raes, Dirk & Vanuytrecht, Eline & Sah, Shrawan Kumar, 2013. "Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling," Agricultural Water Management, Elsevier, vol. 122(C), pages 53-62.
    2. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    3. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    4. Ruttanaprasert, Ruttanachira & Jogloy, Sanun & Vorasoot, Nimitr & Kesmala, Thawan & Kanwar, Rameshwar S. & Holbrook, C. Corley & Patanothai, Aran, 2016. "Effects of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke," Agricultural Water Management, Elsevier, vol. 166(C), pages 130-138.
    5. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    6. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    7. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    8. Raziei, Tayeb & Pereira, Luis S., 2013. "Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran," Agricultural Water Management, Elsevier, vol. 121(C), pages 1-18.
    9. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    10. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    11. Hossein Tabari, 2010. "Evaluation of Reference Crop Evapotranspiration Equations in Various Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2311-2337, August.
    12. Masuda, Tadayoshi & Goldsmith, Peter D., 2009. "World Soybean Production: Area Harvested, Yield, and Long-Term Projections," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 12(4), pages 1-20, November.
    13. Tan, Shuai & Wang, Quanjiu & Zhang, Jihong & Chen, Yong & Shan, Yuyang & Xu, Di, 2018. "Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 196(C), pages 99-113.
    14. Tavakoli, Ali Reza & Mahdavi Moghadam, Mehran & Sepaskhah, Ali Reza, 2015. "Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran," Agricultural Water Management, Elsevier, vol. 161(C), pages 136-146.
    15. Yuan, M. & Zhang, L. & Gou, F. & Su, Z. & Spiertz, J.H.J. & van der Werf, W., 2013. "Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia," Agricultural Water Management, Elsevier, vol. 122(C), pages 28-38.
    16. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Narges Zaredar & Seyed Ali Jozi & Nematollah Khorssani & Seyed Mahmoud Shariat, 2021. "Climate-induced changing environment in semidry lands: a statistical-based simulation approach in Qarasou Sub-basin of Karkheh River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10416-10431, July.
    3. Lucas Eduardo Oliveira Aparecido & Kamila Cunha Meneses & Pedro Antonio Lorençone & João Antonio Lorençone & Jose Reinaldo da Silva Cabral de Moraes & Glauco Souza Rolim, 2023. "Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 855-878, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
    3. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    5. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    7. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    10. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    11. Xu, Junzeng & Bai, Wenhuan & Li, Yawei & Wang, Haiyu & Yang, Shihong & Wei, Zheng, 2019. "Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 289-297.
    12. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    15. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    17. Han, Congying & Zhang, Baozhong & Chen, He & Liu, Yu & Wei, Zheng, 2020. "Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data," Agricultural Water Management, Elsevier, vol. 240(C).
    18. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.
    19. Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
    20. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:205:y:2018:i:c:p:63-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.