Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2021.107344
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
- Catherine L. Kling & Yiannis Panagopoulos & Sergey S. Rabotyagov & Adriana M. Valcu & Philip W. Gassman & Todd Campbell & Michael J. White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj K. Jha & Je, 2014.
"LUMINATE: linking agricultural land use, local water quality and Gulf of Mexico hypoxia,"
European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 431-459.
- Kling, Catherine L. & Panagopoulos, Yiannis & Rabotyagov, Sergey S. & Valcu-Lisman, Adriana & Gassman, Philip W. & Campbell, Todd D. & White, Michael J. & Arnold, Jeffrey G. & Srinivasan, Raghavan & J, 2014. "LUMINATE: linking agricultural land use, local water quality and Gulf of Mexico hypoxia," ISU General Staff Papers 201406100700001545, Iowa State University, Department of Economics.
- Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).
- Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
- Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
- Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Khalidullin O H, 2018. "Water Circulation and Climate Change," JOJ Wildlife & Biodiversity, Juniper Publishers Inc., vol. 1(1), pages 1-3, November.
- Martins, Minella Alves & Tomasella, Javier & Dias, Cássia Gabriele, 2019. "Maize yield under a changing climate in the Brazilian Northeast: Impacts and adaptation," Agricultural Water Management, Elsevier, vol. 216(C), pages 339-350.
- Corey Lesk & Ethan Coffel & Radley Horton, 2020. "Net benefits to US soy and maize yields from intensifying hourly rainfall," Nature Climate Change, Nature, vol. 10(9), pages 819-822, September.
- Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
- Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
- Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
- Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
- Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ferin, Kelsie M. & Kucharik, Christopher J., 2024. "Irrigation expansion shows potential for increased maize yield and reduced nitrogen leaching in the Midwest US," Agricultural Systems, Elsevier, vol. 219(C).
- Mary Ann Cunningham, 2022. "Climate Change, Agriculture, and Biodiversity: How Does Shifting Agriculture Affect Habitat Availability?," Land, MDPI, vol. 11(8), pages 1-13, August.
- Neik, T. X. & Siddique, K. H. M. & Mayes, S. & Edwards, D. & Batley, J. & Mabhaudhi, Tafadzwanashe & Song, B. K. & Massawe, F., 2023. "Diversifying agrifood systems to ensure global food security following the Russia–Ukraine crisis," Papers published in Journals (Open Access), International Water Management Institute, pages 1-7:1124640.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
- Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
- Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
- Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
- Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
- Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
- Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
- Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
- Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
- Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Fawen Li & Dong Yu & Yong Zhao, 2019. "Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 39-55, January.
- Umesh, Barikara & Reddy, K.S. & Polisgowdar, B.S. & Maruthi, V. & Satishkumar, U. & Ayyanagoudar, M.S. & Rao, Sathyanarayan & Veeresh, H., 2022. "Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana," Agricultural Water Management, Elsevier, vol. 274(C).
- Narges Zaredar & Seyed Ali Jozi & Nematollah Khorssani & Seyed Mahmoud Shariat, 2021. "Climate-induced changing environment in semidry lands: a statistical-based simulation approach in Qarasou Sub-basin of Karkheh River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10416-10431, July.
- Pinheiro, Antonio Gebson & Alves, Cleber Pereira & Souza, Carlos André Alves de & Araújo Júnior, George do Nascimento & Jardim, Alexandre Maniçoba da Rosa Ferraz & Morais, José Edson Florentino de & S, 2024. "Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment," Ecological Modelling, Elsevier, vol. 488(C).
- Choi, Eseul & DePaula, Guilherme & Kyveryga, Peter & Fey, Suzanne, 2024. "The Trade-off between Yield and Nitrogen Pollution under Excessive Rainfall: Evidence from On-farm Field Experiments in Iowa," ISU General Staff Papers 202402222018560000, Iowa State University, Department of Economics.
- Martins, Minella A. & Tomasella, Javier & Rodriguez, Daniel A. & Alvalá, Regina C.S. & Giarolla, Angélica & Garofolo, Lucas L. & Júnior, José Lázaro Siqueira & Paolicchi, Luis T.L.C. & Pinto, Gustavo , 2018. "Improving drought management in the Brazilian semiarid through crop forecasting," Agricultural Systems, Elsevier, vol. 160(C), pages 21-30.
- Marjan Aziz & Sultan Ahmad Rizvi & Muhammad Sultan & Muhammad Sultan Ali Bazmi & Redmond R. Shamshiri & Sobhy M. Ibrahim & Muhammad A. Imran, 2022. "Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
- Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
- Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
More about this item
Keywords
AquaCrop; Climate impacts; RCP 4.5; RCP 8.5; Global circulation models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.