IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v274y2022ics0378377422004978.html
   My bibliography  Save this article

Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana

Author

Listed:
  • Umesh, Barikara
  • Reddy, K.S.
  • Polisgowdar, B.S.
  • Maruthi, V.
  • Satishkumar, U.
  • Ayyanagoudar, M.S.
  • Rao, Sathyanarayan
  • Veeresh, H.

Abstract

The study was under taken at ICAR-CRIDA, Hyderabad (India) to assess the climate change impact on maize crop. There were five main irrigation treatments viz., I0, I1, I2, I3, I4, two sub treatments viz., M0 (no mulching), M1 (mulching @ 5 t ha−1 with glyricidia) and two sub-sub treatments viz., NF (normal fertilizer) and HF (high fertilizer) to study the effect of supplemental irrigation and crop management practices on maize grain yield and water productivity in semi-arid alfisols of Telangana state. The results of the study indicated that, the highest average grain yield of 3.19 t ha−1 was recorded in I4 and lowest was in I0 (1.78 t ha−1). The highest average water productivity (10.65 kg ha−1 mm−1) was recorded in I4 followed and the lowest was in I0 (7.60 kg ha−1 mm−1). The AquaCrop model was calibrated for simulation of grain yield and water productivity for all treatment levels and the prediction error statistics were 0.94 < E < 0.95 %, 0.06

Suggested Citation

  • Umesh, Barikara & Reddy, K.S. & Polisgowdar, B.S. & Maruthi, V. & Satishkumar, U. & Ayyanagoudar, M.S. & Rao, Sathyanarayan & Veeresh, H., 2022. "Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana," Agricultural Water Management, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004978
    DOI: 10.1016/j.agwat.2022.107950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmood, A. & Oweis, T. & Ashraf, M. & Majid, A. & Aftab, M. & Aadal, N.K. & Ahmad, I., 2015. "Performance of improved practices in farmers’ fields under rainfed and supplemental irrigation systems in a semi-arid area of Pakistan," Agricultural Water Management, Elsevier, vol. 155(C), pages 1-10.
    2. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
    3. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    4. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    6. Ahmadi, Mojgan & Etedali, Hadi Ramezani & Elbeltagi, Ahmed, 2021. "Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Santanu Kumar Bal & Malamal Alickal Sarath Chandran & Sandeep Vadakkemethel Madhavan & Abburi Venkata Maruthi Subba Rao & Narayanan Manikandan & Ramagiri Praveen Kumar & Pramod Valiyaparambil Paramesw, 2022. "Water Demand in Maize Is Projected to Decrease under Changing Climate in India," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    9. Paoletti, J. Mitchell & Shortridge, Julie E., 2020. "Improved representation of uncertainty in farm-level financial cost-benefit analyses of supplemental irrigation in humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    11. Li Fawen & Zhang Manjing & Liu Yaoze, 2022. "Quantitative research on drought loss sensitivity of summer maize based on AquaCrop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1065-1084, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    2. Jesus Puma-Cahua & Germán Belizario & Wilber Laqui & Roberto Alfaro & Edilberto Huaquisto & Elmer Calizaya, 2023. "Evaluating the Yields of the Rainfed Potato Crop under Climate Change Scenarios Using the AquaCrop Model in the Peruvian Altiplano," Sustainability, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Beatrice Monteleone & Iolanda Borzí & Brunella Bonaccorso & Mario Martina, 2023. "Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2761-2796, April.
    4. Monteleone, Beatrice & Borzí, Iolanda & Arosio, Marcello & Cesarini, Luigi & Bonaccorso, Brunella & Martina, Mario, 2023. "Modelling the response of wheat yield to stage-specific water stress in the Po Plain," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    10. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    11. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    14. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    15. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    16. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Dzikiti, S. & Lotter, D. & Mpandeli, S. & Nhamo, L., 2022. "Assessing the energy and water balance dynamics of rain-fed rooibos tea crops (Aspalathus linearis) under changing Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).
    20. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.