IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics037837742400489x.html
   My bibliography  Save this article

AquaCrop Plug-in-PSO: A novel irrigation scheduling optimization framework for maize to maximize crop water productivity using in-season weather forecast and crop yield estimation

Author

Listed:
  • Sharafkhane, Mahdi Gholami
  • Ziaei, Ali Naghi
  • Naghedifar, Seyed Mohammadreza
  • Akbari, Amir
  • Verdi, Amir

Abstract

Maize is among the most important crops in Iran. Enhancing maize irrigation management is critical for alleviating the pressure on limited freshwater resources in Khorasan Razavi province. The main objective of this study was to develop a novel irrigation scheduling optimization framework (AquaCrop plug-in-PSO) for maize, based on in-season weather forecasts integrated with the AquaCrop plug-in model and the particle swarm optimization (PSO) algorithm. During the growing season, weather forecasts combined with AquaCrop plug-in-PSO algorithm create optimal irrigation plans for different crop growth stages, maximizing crop water productivity (WPC). A two-year (2021–2022) maize field irrigation experiment was conducted in Mashhad, Iran, to collect all necessary data for calibration (2021 data) and validation (2022 data) of the AquaCrop model. Three irrigation cases were then simulated (i.e., full irrigation and deficit irrigation: 70 % and 90 % of full irrigation) to evaluate the performance of the AquaCrop plug-in-PSO approach against the typical irrigation management of local farmers, as well as ET-based and soil moisture-based irrigation scheduling methods. Additionally, AquaCrop plug-in-PSO was used to evaluate the algorithm’s performance with historical weather data. The simulation results showed that the AquaCrop Plug-in-PSO, when used with weather forecast data (AquaCrop plug-in-PSO dynamic approach), outperformed all other irrigation scheduling methods for both deficit and full irrigation cases, achieving the highest WPC, ranging from 2.21 to 3.12 kg m−3. Our simulation results demonstrate that the AquaCrop plug-in-PSO dynamic approach can be effectively used for efficient autonomous full and maize deficit irrigation scheduling in arid and semiarid regions.

Suggested Citation

  • Sharafkhane, Mahdi Gholami & Ziaei, Ali Naghi & Naghedifar, Seyed Mohammadreza & Akbari, Amir & Verdi, Amir, 2024. "AquaCrop Plug-in-PSO: A novel irrigation scheduling optimization framework for maize to maximize crop water productivity using in-season weather forecast and crop yield estimation," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s037837742400489x
    DOI: 10.1016/j.agwat.2024.109153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400489X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Libing Song & Jiming Jin & Jianqiang He, 2019. "Effects of Severe Water Stress on Maize Growth Processes in the Field," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    2. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
    3. Faramarzi, Monireh & Yang, Hong & Schulin, Rainer & Abbaspour, Karim C., 2010. "Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1861-1875, November.
    4. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    5. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    7. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    9. Mohamed Sallah, Abdoul-Hamid & Tychon, Bernard & Piccard, Isabelle & Gobin, Anne & Van Hoolst, Roel & Djaby, Bakary & Wellens, Joost, 2019. "Batch-processing of AquaCrop plug-in for rainfed maize using satellite derived Fractional Vegetation Cover data," Agricultural Water Management, Elsevier, vol. 217(C), pages 346-355.
    10. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    11. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2021. "Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain," Agricultural Water Management, Elsevier, vol. 257(C).
    12. Li, Xuemin & Zhang, Jingwen & Cai, Ximing & Huo, Zailin & Zhang, Chenglong, 2023. "Simulation-optimization based real-time irrigation scheduling: A human-machine interactive method enhanced by data assimilation," Agricultural Water Management, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    2. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    4. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    5. Moghbel, Farzam & Fazel, Forough & Aguilar, Jonathan & Mosaedi, Abolfazl & Lollato, Romulo P., 2024. "Long-term investigation of the irrigation intervals and supplementary irrigation strategies effects on winter wheat in the U.S. Central High Plains based on a combination of crop modeling and field st," Agricultural Water Management, Elsevier, vol. 304(C).
    6. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    7. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    8. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
    9. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    10. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    12. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    14. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Mohamed Sallah, Abdoul-Hamid & Tychon, Bernard & Piccard, Isabelle & Gobin, Anne & Van Hoolst, Roel & Djaby, Bakary & Wellens, Joost, 2019. "Batch-processing of AquaCrop plug-in for rainfed maize using satellite derived Fractional Vegetation Cover data," Agricultural Water Management, Elsevier, vol. 217(C), pages 346-355.
    16. Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
    17. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.
    18. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    20. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s037837742400489x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.