IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v254y2021ics0378377421002390.html
   My bibliography  Save this article

Using EPIC to simulate the effects of different irrigation and fertilizer levels on maize yield in the Eastern Cape, South Africa

Author

Listed:
  • Choruma, Dennis Junior
  • Balkovic, Juraj
  • Pietsch, Stephan Alexander
  • Odume, Oghenekaro Nelson

Abstract

Growing water scarcity and increasing Nitrogen (N) fertiliser prices in South Africa require more prudent N fertiliser and irrigation water use approaches. If the goal of sustainable agricultural intensification is to be realised, it is vital to develop location-specific agricultural land management strategies that promote increased crop productivity while minimising negative environmental impacts. In this study, a calibrated and validated Environmental Policy Integrated Climate (EPIC) model was used to simulate a range of N fertiliser and irrigation water levels on maize (Zea mays L.) yield in the Eastern Cape of South Africa. Results showed that a fertiliser and irrigation water management schedule combining approximately 200 kg N ha-1 and 580 mm irrigation water per maize growing season provided the highest average maize yield of 12.2 Mg ha-1 (an increase of +69% above farmers’ current maize yield levels). Nitrogen fertiliser application levels greater than 160 kg N ha-1 resulted in potential N fertiliser leaching losses of more than 35 kg N ha-1. The EPIC model can be considered a valuable tool to aid decision-makers in identifying optimal, site-specific irrigation water and N fertiliser application levels that contribute to increased maize crop productivity while maximising water use.

Suggested Citation

  • Choruma, Dennis Junior & Balkovic, Juraj & Pietsch, Stephan Alexander & Odume, Oghenekaro Nelson, 2021. "Using EPIC to simulate the effects of different irrigation and fertilizer levels on maize yield in the Eastern Cape, South Africa," Agricultural Water Management, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002390
    DOI: 10.1016/j.agwat.2021.106974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.
    2. Kiniry, James R. & Major, D. J. & Izarralde, R. C. & Williams, J. R. & Gassman, Philip W. & Morrison, M. & Bergentine, R. & Zentner, R. P., 1995. "Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region," Staff General Research Papers Archive 894, Iowa State University, Department of Economics.
    3. Bozkurt, Yesim & Yazar, Attila & Gencel, Burcin & Sezen, Metin Semih, 2006. "Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 113-120, September.
    4. Guanghua Yin & Jian Gu & Fasheng Zhang & Liang Hao & Peifei Cong & Zuoxin Liu, 2014. "Maize Yield Response to Water Supply and Fertilizer Input in a Semi-Arid Environment of Northeast China," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    5. Dennis Junior Choruma & Oghenekaro Nelson Odume, 2019. "Exploring Farmers’ Management Practices and Values of Ecosystem Services in an Agroecosystem Context—A Case Study from the Eastern Cape, South Africa," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    6. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    7. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    8. Kipkorir, E. C. & Raes, D. & Massawe, B., 2002. "Seasonal water production functions and yield response factors for maize and onion in Perkerra, Kenya," Agricultural Water Management, Elsevier, vol. 56(3), pages 229-240, August.
    9. Tolk, Judy A. & Howell, Terry A., 2003. "Water use efficiencies of grain sorghum grown in three USA southern Great Plains soils," Agricultural Water Management, Elsevier, vol. 59(2), pages 97-111, March.
    10. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    11. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    12. Payero, Jose O. & Melvin, Steven R. & Irmak, Suat & Tarkalson, David, 2006. "Yield response of corn to deficit irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 101-112, July.
    13. Guo, Ruiping & Lin, Zhonghui & Mo, Xingguo & Yang, Chunlin, 2010. "Responses of crop yield and water use efficiency to climate change in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1185-1194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
    2. Mary Ollenburger & Page Kyle & Xin Zhang, 2022. "Uncertainties in estimating global potential yields and their impacts for long-term modeling," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1177-1190, October.
    3. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    4. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    5. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    6. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    7. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    10. Ascough II, J.C. & Andales, A.A. & Sherrod, L.A. & McMaster, G.S. & Hansen, N.C. & DeJonge, K.C. & Fathelrahman, E.M. & Ahuja, L.R. & Peterson, G.A. & Hoag, D.L., 2010. "Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM," Agricultural Systems, Elsevier, vol. 103(8), pages 569-584, October.
    11. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    12. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    13. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    14. Schierhorn, Florian & Faramarzi, Monireh & Prishchepov, Alexander V. & Koch, Friedrich J. & Müller, Daniel, 2014. "Quantifying yield gaps in wheat production in Russia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(8), pages 1-12.
    15. Chul-Hee Lim & Yuyoung Choi & Moonil Kim & Soo Jeong Lee & Christian Folberth & Woo-Kyun Lee, 2018. "Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    16. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    17. Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    19. Tatsumi, Kenichi, 2016. "Effects of automatic multi-objective optimization of crop models on corn yield reproducibility in the U.S.A," Ecological Modelling, Elsevier, vol. 322(C), pages 124-137.
    20. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.