IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i6p794-d828740.html
   My bibliography  Save this article

Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa

Author

Listed:
  • Dennis Junior Choruma

    (African Studies Centre, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa
    Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa)

  • Frank Chukwuzuoke Akamagwuna

    (Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa)

  • Nelson Oghenekaro Odume

    (Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa)

Abstract

Climate change has been projected to impact negatively on African agricultural systems. However, there is still an insufficient understanding of the possible effects of climate change on crop yields in Africa. In this study, a previously calibrated Environmental Policy Integrated Climate (EPIC) model was used to assess the effects of future climate change on maize ( Zea mays L.) yield in the Eastern Cape Province of South Africa. The study aimed to compare maize yields obtained from EPIC simulations using baseline (1980–2010) weather data with maize yields obtained from EPIC using statistically downscaled future climate data sets for two future periods (mid-century (2040–2069) and late century (2070–2099)). We used three general circulation models (GCMs): BCC-CSM1.1, GFDL-ESM2M and MIROC-ES under two Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, to drive the future maize yield simulations. Simulation results showed that for all three GCMs and for both future periods, a decrease in maize production was projected. Maize yield was projected to decrease by as much as 23.8% for MIROC, RCP 8.5, (2070–2099). The temperature was projected to rise by over 50% in winter under RCP 8.5 for both future periods. For both future scenarios, rainfall was projected to decrease in the summer months while increasing in the winter months. Overall, this study provides preliminary evidence that local farmers and the Eastern Cape government can utilise to develop local climate change adaptation strategies.

Suggested Citation

  • Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:794-:d:828740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/6/794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/6/794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.
    2. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    3. Zhaozhi Wang & Zhiming Qi & Lulin Xue & Melissa Bukovsky & Matthew Helmers, 2015. "Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field," Climatic Change, Springer, vol. 129(1), pages 323-335, March.
    4. Gina Ziervogel & Mark New & Emma Archer van Garderen & Guy Midgley & Anna Taylor & Ralph Hamann & Sabine Stuart‐Hill & Jonny Myers & Michele Warburton, 2014. "Climate change impacts and adaptation in South Africa," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(5), pages 605-620, September.
    5. Kiniry, James R. & Major, D. J. & Izarralde, R. C. & Williams, J. R. & Gassman, Philip W. & Morrison, M. & Bergentine, R. & Zentner, R. P., 1995. "Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region," Staff General Research Papers Archive 894, Iowa State University, Department of Economics.
    6. Jing Wang & Enli Wang & Xiaoguang Yang & Fusuo Zhang & Hong Yin, 2012. "Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation," Climatic Change, Springer, vol. 113(3), pages 825-840, August.
    7. Steven J. Smith and T.M.L. Wigley, 2006. "Multi-Gas Forcing Stabilization with Minicam," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 373-392.
    8. Webber, Heidi & Gaiser, Thomas & Ewert, Frank, 2014. "What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?," Agricultural Systems, Elsevier, vol. 127(C), pages 161-177.
    9. Islam, Adlul & Ahuja, Lajpat R. & Garcia, Luis A. & Ma, Liwang & Saseendran, Anapalli S. & Trout, Thomas J., 2012. "Modeling the impacts of climate change on irrigated corn production in the Central Great Plains," Agricultural Water Management, Elsevier, vol. 110(C), pages 94-108.
    10. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    11. Bao, Yawen & Hoogenboom, Gerrit & McClendon, Ron & Vellidis, George, 2017. "A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data," Agricultural Systems, Elsevier, vol. 150(C), pages 109-119.
    12. Nhamo, Luxon & Mabhaudhi, T. & Modi, A. T., 2019. "Preparedness or repeated short-term relief aid?: building drought resilience through early warning in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 45(1):75-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choruma, Dennis Junior & Balkovic, Juraj & Pietsch, Stephan Alexander & Odume, Oghenekaro Nelson, 2021. "Using EPIC to simulate the effects of different irrigation and fertilizer levels on maize yield in the Eastern Cape, South Africa," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Tatsumi, Kenichi, 2016. "Effects of automatic multi-objective optimization of crop models on corn yield reproducibility in the U.S.A," Ecological Modelling, Elsevier, vol. 322(C), pages 124-137.
    3. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    4. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    5. Wang, Xuechun & Samo, Naseem & Wang, Mengran & Qadir, Muslim & Yang, Guotao & Hu, Yungao & Ali, Kawsar, 2019. "Dynamic changing of soil water in artificial ryegrass land in the hilly regions of Sichuan Basin area," Agricultural Water Management, Elsevier, vol. 221(C), pages 99-108.
    6. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    7. Chul-Hee Lim & Yuyoung Choi & Moonil Kim & Soo Jeong Lee & Christian Folberth & Woo-Kyun Lee, 2018. "Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    8. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Wang, Zhaozhi & Zhang, T.Q. & Tan, C.S. & Xue, Lulin & Bukovsky, Melissa & Qi, Z.M., 2021. "Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada," Agricultural Systems, Elsevier, vol. 190(C).
    10. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    11. Robert Malone & Jurgen Garbrecht & Phillip Busteed & Jerry Hatfield & Dennis Todey & Jade Gerlitz & Quanxiao Fang & Matthew Sima & Anna Radke & Liwang Ma & Zhiming Qi & Huaiqing Wu & Dan Jaynes & Thom, 2020. "Drainage N Loads Under Climate Change with Winter Rye Cover Crop in a Northern Mississippi River Basin Corn-Soybean Rotation," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    12. Zhang, Yuanhong & Peng, Xingxing & Ning, Fang & Dong, Zhaoyang & Wang, Rui & Li, Jun, 2022. "Assessing the response of orchard productivity to soil water depletion using field sampling and modeling methods," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    14. Jon Sampedro & Iñaki Arto & Mikel González-Eguino, 2017. "Implications of Switching Fossil Fuel Subsidies to Solar: A Case Study for the European Union," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    15. Sindisiwe Nyide & Mulala Danny Simatele & Stefan Grab & Richard Kwame Adom, 2023. "Assessment of the Dynamics towards Effective and Efficient Post-Flood Disaster Adaptive Capacity and Resilience in South Africa," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    16. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 91-124.
    17. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    18. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 Greenhouse Gas Mitigation Modeling with Marginal Abatement Cost Curves: Technical Change, Emission Scenarios and Policy Costs," Working Papers 2013.110, Fondazione Eni Enrico Mattei.
    19. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Janna Frischen & Isabel Meza & Daniel Rupp & Katharina Wietler & Michael Hagenlocher, 2020. "Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability," Sustainability, MDPI, vol. 12(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:794-:d:828740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.