IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v187y2021ics0308521x20308751.html
   My bibliography  Save this article

Crop modelling in data-poor environments – A knowledge-informed probabilistic approach to appreciate risks and uncertainties in flood-based farming systems

Author

Listed:
  • Liman Harou, Issoufou
  • Whitney, Cory
  • Kung'u, James
  • Luedeling, Eike

Abstract

Crop models can support agricultural decisions, yet their reliability is necessarily limited when they do not sufficiently represent the complexity and specific circumstances of the target system. In some cases, models have such prohibitively high data requirements that they are only applicable with far-reaching and often questionable assumptions. In this paper, we demonstrate a customizable solution-oriented approach for crop modelling in situations where data and resources are limited. To address system complexity and produce a probabilistic crop model that does not depend on precise data, we used participatory analysis to describe system components using individual Bayesian networks that formalize expert knowledge into probabilistic causal relationships among important variables. We then used these Bayesian networks to generate inputs for a Monte Carlo model that illustrates the determinants of crop growth and simulates plausible ranges of expected grain and biomass yields at various stages of crop development. The resulting model accounts for all important variables and their interactions, as examined by local and foreign experts and described in relevant literature. We describe how to develop and customize such a model to specific situations based on case studies related to flood-based farming systems in Ethiopia and Kenya. The model assesses the performance of cropping systems and individual crops, and identifies factors of high importance for system outcomes. This approach to crop modelling paves the way for new opportunities to support agricultural decisions, since it does not require perfect information and can accommodate system complexity and uncertainty in data-poor environments.

Suggested Citation

  • Liman Harou, Issoufou & Whitney, Cory & Kung'u, James & Luedeling, Eike, 2021. "Crop modelling in data-poor environments – A knowledge-informed probabilistic approach to appreciate risks and uncertainties in flood-based farming systems," Agricultural Systems, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:agisys:v:187:y:2021:i:c:s0308521x20308751
    DOI: 10.1016/j.agsy.2020.103014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20308751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.103014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Gallagher, 1987. "U.S. Soybean Yields: Estimation and Forecasting with Nonsymmetric Disturbances," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(4), pages 796-803.
    2. Gallagher, Paul W., 1987. "U.S. Soybean Yields: Estimation and Forecasting with Non-Symmetric Disturbances," Staff General Research Papers Archive 10779, Iowa State University, Department of Economics.
    3. Erkossa, Teklu & Hagos, Fitsum & Lefore, Nicole, 2014. "Proceedings of the Workshop on Flood-based Farming for Food Security and Adaption to Climate Change in Ethiopia: Potential and Challenges, Adama, Ethiopia, 30-31 October 2013," Conference Proceedings h046909, International Water Management Institute.
    4. Octavio A. Ramirez & Sukant Misra & James Field, 2003. "Crop-Yield Distributions Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 108-120.
    5. Erkossa, Teklu & Langan, Simon J. & Hagos, Fitsum, 2014. "Constraints to the development, operation and maintenance of spate irrigation schemes in Ethiopia," Conference Papers h046925, International Water Management Institute.
    6. Issoufou Liman Harou & Cory Whitney & James Kung’u & Eike Luedeling, 2020. "Mapping Flood-Based Farming Systems with Bayesian Networks," Land, MDPI, vol. 9(10), pages 1-29, October.
    7. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    8. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    9. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Motisi, Natacha & Bommel, Pierre & Leclerc, Grégoire & Robin, Marie-Hélène & Aubertot, Jean-Noël & Butron, Andrea Arias & Merle, Isabelle & Treminio, Edwin & Avelino, Jacques, 2022. "Improved forecasting of coffee leaf rust by qualitative modeling: Design and expert validation of the ExpeRoya model," Agricultural Systems, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    2. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    3. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    4. Ramirez, Octavio A. & Shonkwiler, J. Scott, 2017. "A Probabilistic Model of Crop Insurance Purchase Decision," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(1), pages 1-17, January.
    5. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    6. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    7. Ramirez, Octavio & Shonkwiler, J. Scott, 2016. "Some Comparative Statics for Evaluating the Performance of the US Crop Insurance Program," SCC-76 Meeting, 2016, March 17-19, Pensacola, Florida 233761, SCC-76: Economics and Management of Risk in Agriculture and Natural Resources.
    8. Ozaki, Vitor Augusto & Olinda, Ricardo & Faria, Priscila Neves & Campos, Rogério Costa, 2014. "Estimation of the Agricultural Probability of Loss: evidence for soybean in Paraná State," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(1), January.
    9. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    10. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    12. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    13. Arora, Gaurav & Agarwal, Sandip K., 2020. "Agricultural input use and index insurance adoption: Concept and evidence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304508, Agricultural and Applied Economics Association.
    14. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    15. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    17. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    18. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    19. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    20. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:187:y:2021:i:c:s0308521x20308751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.