IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v162y2018icp123-135.html
   My bibliography  Save this article

Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program

Author

Listed:
  • Thomas, Dean T.
  • Moore, Andrew D.
  • Bell, Lindsay W.
  • Webb, Nicholas P.

Abstract

Maintaining the productive capacity of the agricultural soils of Australia's broadacre cropping zone requires careful management, given a highly variable climate and soils that are susceptible to degradation. Mixed crop-livestock farming systems are the predominant land use across these regions and managers must operate farms for long-term sustainability as well as shorter-term profitability. Achieving profitable and sustainable businesses has required ongoing innovation and productivity gains, of which the integration of crop and livestock enterprises has been an important part. Production-soil erosion trade-offs associated with enterprise integration is critical information that has not been investigated to date at a whole-farm level. The objective of this study was to systematically evaluate management options developed in Grain and Graze (an integrated program of research, development and extension targeting mixed farms) to identify farm systems responses to soil erosion risks across seven regions spanning the mixed-farming area of Australia. To evaluate production-soil erosion trade-offs, we linked the APSIM soil water, soil nutrient cycling, annual crop and surface residue simulation models to the GRAZPLAN pasture and ruminant simulation models, using the AusFarm modelling software. Our results demonstrate that the management options tested in Grain and Graze support the principles of conservation agriculture and inform the sustainable intensification of mixed farming systems. Across the regions considered we found that: (1) Increasing pasture legume content and soil fertility can consistently benefit farm production and environmental indicators, (2) management interventions that target direct management of ground cover have the greatest potential to reduce soil erosion rates, (3) management during critical periods of naturally high soil erodibility and wind/water erosivity can substantially increase or decrease erosion risk; the timing of management interventions is therefore critical, and (4) grazing management to balance use of crop residues and pasture biomass is required to avoid developing hot spots of erosion and soil degradation.

Suggested Citation

  • Thomas, Dean T. & Moore, Andrew D. & Bell, Lindsay W. & Webb, Nicholas P., 2018. "Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program," Agricultural Systems, Elsevier, vol. 162(C), pages 123-135.
  • Handle: RePEc:eee:agisys:v:162:y:2018:i:c:p:123-135
    DOI: 10.1016/j.agsy.2018.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17306042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip K. Thornton & Mario Herrero, 2015. "Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa," Nature Climate Change, Nature, vol. 5(9), pages 830-836, September.
    2. D'Emden, Francis H. & Llewellyn, Rick S. & Burton, Michael P., 2008. "Factors influencing adoption of conservation tillage in Australian cropping regions," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(2), pages 1-14.
    3. Nicholas Webb & Chris Stokes & Joe Scanlan, 2012. "Interacting effects of vegetation, soils and management on the sensitivity of Australian savanna rangelands to climate change," Climatic Change, Springer, vol. 112(3), pages 925-943, June.
    4. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    5. Francis H. D'Emden & Rick S. Llewellyn & Michael P. Burton, 2008. "Factors influencing adoption of conservation tillage in Australian cropping regions ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(2), pages 169-182, June.
    6. Andrea Koch & Adrian Chappell & Michael Eyres & Edward Scott, 2015. "Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    7. Donnelly, J. R. & Moore, A. D. & Freer, M., 1997. "GRAZPLAN: Decision support systems for Australian grazing enterprises--I. Overview of the GRAZPLAN project, and a description of the MetAccess and LambAlive DSS," Agricultural Systems, Elsevier, vol. 54(1), pages 57-76, May.
    8. Moore, A.D. & Holzworth, D.P. & Herrmann, N.I. & Huth, N.I. & Robertson, M.J., 2007. "The Common Modelling Protocol: A hierarchical framework for simulation of agricultural and environmental systems," Agricultural Systems, Elsevier, vol. 95(1-3), pages 37-48, December.
    9. Turner, Graham M. & Dunlop, Michael & Candy, Seona, 2016. "The impacts of expansion and degradation on Australian cropping yields—An integrated historical perspective," Agricultural Systems, Elsevier, vol. 143(C), pages 22-37.
    10. Hansen, J. W., 1996. "Is agricultural sustainability a useful concept?," Agricultural Systems, Elsevier, vol. 50(2), pages 117-143.
    11. Moraine, Marc & Grimaldi, Juliette & Murgue, Clément & Duru, Michel & Therond, Olivier, 2016. "Co-design and assessment of cropping systems for developing crop-livestock integration at the territory level," Agricultural Systems, Elsevier, vol. 147(C), pages 87-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monjardino, Marta & Loi, Angelo & Thomas, Dean T. & Revell, Clinton K. & Flohr, Bonnie M. & Llewellyn, Rick S. & Norman, Hayley C., 2022. "Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems," Agricultural Systems, Elsevier, vol. 203(C).
    2. Young, Michael & Young, John & Kingwell, Ross S. & Vercoe, Philip E., 2023. "Evaluation of the least cost option to manage pastures in a wet winter in south-eastern Australia," AFBM Journal, Australasian Farm Business Management Network, vol. 20(3), August.
    3. Ha T. N. Huynh & Lisa A. Lobry de Bruyn & Oliver G. G. Knox & Hoa T. T. Hoang, 2022. "Means and ways of engaging, communicating and preserving local soil knowledge of smallholder farmers in Central Vietnam," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(3), pages 1039-1062, September.
    4. Ghahramani, Afshin & Kingwell, Ross S. & Maraseni, Tek Narayan, 2020. "Land use change in Australian mixed crop-livestock systems as a transformative climate change adaptation," Agricultural Systems, Elsevier, vol. 180(C).
    5. Xiao Zhang & Wenwu Zhao & Lixin Wang & Yuanxin Liu & Qiang Feng & Xuening Fang & Yue Liu, 2018. "Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
    6. Afshin Ghahramani & S. Mark Howden & Agustin del Prado & Dean T. Thomas & Andrew D. Moore & Boyu Ji & Serkan Ates, 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review," Sustainability, MDPI, vol. 11(24), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schipmann, Christin & Qaim, Matin, 2009. "Modern Supply Chains and Product Innovation: How Can Smallholder Farmers Benefit?," 2009 Conference, August 16-22, 2009, Beijing, China 51046, International Association of Agricultural Economists.
    2. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.
    3. Nordblom, Thomas L. & Penfold, Chris & Weckert, Melanie & Norton, Mark R., 2017. "Straw and living mulches compared with herbicide for under-vine weed control in a Public-Private Benefit Framework," 2017 Conference (61st), February 7-10, 2017, Brisbane, Australia 258677, Australian Agricultural and Resource Economics Society.
    4. Wade, Tara & Claassen, Roger, 2015. "Modeling No-Tillage Adoption by Corn and Soybean Producers: Insights into Sustained Adoption," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204957, Agricultural and Applied Economics Association.
    5. Katherine Dentzman & Ian Cristofer Burke, 2021. "Herbicide Resistance, Tillage, and Community Management in the Pacific Northwest," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Xin Yang & Yiming Sang, 2020. "How Does Part-Time Farming Affect Farmers’ Adoption of Conservation Agriculture in Jianghan Plain, China?," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    7. Tingting Liu & Randall J. F. Bruins & Matthew T. Heberling, 2018. "Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    8. Yigezu, Yigezu Atnafe & Mugera, Amin & El-Shater, Tamer & Aw-Hassan, Aden & Piggin, Colin & Haddad, Atef & Khalil, Yaseen & Loss, Stephen, 2018. "Enhancing adoption of agricultural technologies requiring high initial investment among smallholders," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 199-206.
    9. Rafia Afroz, 2017. "An Alternative Model for Supporting the Rice Farmers in Adaptation of Climate Change," International Journal of Economics and Financial Issues, Econjournals, vol. 7(5), pages 317-330.
    10. Massfeller, Anna & Meraner, Manuela & Hüttel, Silke & Uehleke, Reinhard, 2022. "Farmers' acceptance of results-based agri-environmental schemes: A German perspective," Land Use Policy, Elsevier, vol. 120(C).
    11. Wang, Zhenhua & Liu, Qiaochu & Yang, Jian & Jiang, Jinqi, 2021. "Can Technology Demonstration Promote Rural Households’ Adoption of Conservation Tillage in the Main Grain-Producing Areas of China?," 2021 Conference, August 17-31, 2021, Virtual 315171, International Association of Agricultural Economists.
    12. Jacques Fils Pierre & Luis Latournerie-Moreno & René Garruña-Hernández & Krista L. Jacobsen & Carrie A. M. Laboski & Lucila de Lourdes Salazar-Barrientos & Esaú Ruiz-Sánchez, 2021. "Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    13. Njabulo Lloyd Ntshangase & Brian Muroyiwa & Melusi Sibanda, 2018. "Farmers’ Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, KwaZulu-Natal Province," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    14. Lulu He & Qingwen Min & Chuanchun Hong & Yongxun Zhang, 2021. "Features and Socio-Economic Sustainability of Traditional Chestnut Forestry Landscape in China: A Case of Kuancheng County, Hebei Province," Land, MDPI, vol. 10(9), pages 1-18, September.
    15. Valborg Kvakkestad & Åsmund Lægreid Steiro & Arild Vatn, 2021. "Pesticide Policies and Farm Behavior: The Introduction of Regulations for Integrated Pest Management," Agriculture, MDPI, vol. 11(9), pages 1-17, August.
    16. Kolikow, Steven & Kragt, Marit Ellen & Mugera, Amin W., 2012. "An interdisciplinary framework of limits and barriers to climate change adaptation in agriculture," Working Papers 120467, University of Western Australia, School of Agricultural and Resource Economics.
    17. Marita Laukkanen & NAUGES Céline, 2009. "Environmental and production cost impacts of no-till: estimates from observed behavior," LERNA Working Papers 09.28.304, LERNA, University of Toulouse.
    18. Mullen, John D., 2001. "An Economic Persective On Land Degradation Issues," Research Reports 27999, New South Wales Department of Primary Industries Research Economists.
    19. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.
    20. Love Offeibea Asiedu-Ayeh & Xungang Zheng & Kobina Agbodah & Bright Senyo Dogbe & Adjei Peter Darko, 2022. "Promoting the Adoption of Agricultural Green Production Technologies for Sustainable Farming: A Multi-Attribute Decision Analysis," Sustainability, MDPI, vol. 14(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:162:y:2018:i:c:p:123-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.