IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v114y2013icp95-105.html
   My bibliography  Save this article

A 2010 map estimate of annually tilled cropland within the conterminous United States

Author

Listed:
  • Johnson, David M.

Abstract

A ca. 2010, 30m resolution map depicting annually tilled areas across the conterminous United States was developed. Input sources included fouryears, spanning 2008–2011, of annual national-level coverage Cropland Data Layer (CDL) land cover classifications as produced by the National Agricultural Statistics Service. Derived total land area under tillage from the aggregate CDL product equaled 112.8million hectares (278.7million acres). By comparison, the 2007 Census of Agriculture (CoA) produced an estimate of 122.9million hectares, suggesting the map is under representing tilled area by 10.1million hectares or 8.2%. Regression analysis using state-level summaries showed a strong, albeit biased, correlation (r-squared=0.99) between the CDL derived tilled area and the CoA information. Notable outliers were North Dakota and Montana. Comparisons of the CDL tilled map were also made against the 2006 National Land Cover Dataset (NLCD) land cover product’s Cultivated Crops category. Strong state-level regression agreement (r-squared=0.98) was also found between the NLCD and the CDL acreages, but the NLCD estimated 8.5% more area than the CDL and thus closely matched that of the CoA. However, significant pixel level differences were found between the CDL and the NLCD. Nationally 5.6% of the maps were in disagreement as to whether cultivated or not, a large proportion considering around a seventh of the country’s land area is tilled. States of Arkansas, Montana and Wisconsin had the largest absolute discrepancies between the NLCD and CDL. Accepting the CDL as reference showed a national level NLCD cropland commission error of 23.0% and omission error of 14.5%. Much of what is believed to be problematic in the NLCD could be explained by definitional issues having included alfalfa hay into their cultivated category for many areas. Ultimately, while it is likely that the CDL annually tilled area model is an underestimate of the true total, taken contextually in map form and adjusted for undercount bias it likely is the best available.

Suggested Citation

  • Johnson, David M., 2013. "A 2010 map estimate of annually tilled cropland within the conterminous United States," Agricultural Systems, Elsevier, vol. 114(C), pages 95-105.
  • Handle: RePEc:eee:agisys:v:114:y:2013:i:c:p:95-105
    DOI: 10.1016/j.agsy.2012.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12001266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2009. "Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach," Agricultural Systems, Elsevier, vol. 99(2-3), pages 126-140, February.
    3. R. Raddatz, 2003. "Agriculture and Tornadoes on the Canadian Prairies: potential impact of increasing atmospheric CO 2 on Summer Severe Weather," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(2), pages 113-122, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larsen, Ashley E. & Hendrickson, Brandon T. & Dedeic, Nicholas & MacDonald, Andrew J., 2015. "Taken as a given: Evaluating the accuracy of remotely sensed crop data in the USA," Agricultural Systems, Elsevier, vol. 141(C), pages 121-125.
    2. Franklin Egan, J. & Hafla, Aimee & Goslee, Sarah, 2015. "Tradeoffs between production and perennial vegetation in dairy farming systems vary among counties in the northeastern U.S," Agricultural Systems, Elsevier, vol. 139(C), pages 17-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    3. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    4. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    5. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Aruga, Kentaka, 2011. "非遺伝子組換え大豆とエネルギーの価格関係について [Relationships among the Non-Genetically Modified Soybean and Energy Prices]," MPRA Paper 38186, University Library of Munich, Germany, revised 20 Aug 2011.
    7. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    8. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    9. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    10. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    11. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    12. Fung, Timothy K.F. & Choi, Doo Hun & Scheufele, Dietram A. & Shaw, Bret R., 2014. "Public opinion about biofuels: The interplay between party identification and risk/benefit perception," Energy Policy, Elsevier, vol. 73(C), pages 344-355.
    13. Stefan Mann, 2016. "Governing complementary responsibility goods through hybrid systems in a globalizing world," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 9(1), pages 14-21.
    14. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    15. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2013. "Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation," NBER Working Papers 19636, National Bureau of Economic Research, Inc.
    16. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    17. Yuqing An & Jin Yeu Tsou & Kapo Wong & Yuanzhi Zhang & Dawei Liu & Yu Li, 2018. "Detecting Land Use Changes in a Rapidly Developing City during 1990–2017 Using Satellite Imagery: A Case Study in Hangzhou Urban Area, China," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    18. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    19. Kanlaya J. Barr & Bruce A. Babcock & Miguel A. Carriquiry & Andre M. Nassar & Leila Harfuch, 2011. "Agricultural Land Elasticities in the United States and Brazil," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 449-462.
    20. António Xavier & Rui Fragoso & Maria Belém Costa Freitas & Maria Socorro Rosário, 2019. "An Approach Using Entropy and Supervised Classifications to Disaggregate Agricultural Data at a Local Level," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 763-779, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:114:y:2013:i:c:p:95-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.