IDEAS home Printed from https://ideas.repec.org/a/cbu/jrnlec/y2022v5p86-94.html

Interoperability Of Sustainable Measures Under The Common Agricultural Policy

Author

Listed:
  • ADELA SORINELA SAFTA

    (BUCHAREST UNIVERSITY OF ECONOMIC STUDIES)

  • DUMITRU NANCU

    (BUCHAREST UNIVERSITY OF ECONOMIC STUDIES)

  • LAVINIA POPESCU

    (BUCHAREST UNIVERSITY OF ECONOMIC STUDIES)

Abstract

Analysis of the impact on agricultural performance from the standpoint of export competitiveness identifies a real lever to open doors as well as the actions taken as a result of the revised Common Agricultural Policy. This innovative method for incorporating environmental factors into the agricultural economy's processes actually presents a cutting-edge, sustainable agriculture model. This study's objective is to look into how the CAP's competitiveness has changed in Romanian agriculture, with a particular focus on its primary goals from 2021 to 2027. The study identifies and looks at some of the Romanian policies that interfere with one another in this context. To establish measures for the CAP's implementation, a special set of data on productivity and export concentration in developing regions with agri-food goods was used. Given the adoption of environmental measures to meet greenhouse gas reduction targets, the obtained results point to the existence of a correlative cause-effect link between the competitiveness of Romanian agriculture and its reliance on the PAC vision.

Suggested Citation

  • Adela Sorinela Safta & Dumitru Nancu & Lavinia Popescu, 2022. "Interoperability Of Sustainable Measures Under The Common Agricultural Policy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 86-94, October.
  • Handle: RePEc:cbu:jrnlec:y:2022:v:5:p:86-94
    as

    Download full text from publisher

    File URL: https://www.utgjiu.ro/revista/ec/pdf/2022-05/11_Safta.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pellerin, Sylvain & Bamière, Laure & Angers, Denis & Béline, Fabrice & Benoit, Marc & Butault, Jean-Pierre & Chenu, Claire & Colnenne-David, Caroline & De Cara, Stéphane & Delame, Nathalie & Doreau, M, 2017. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture," Environmental Science & Policy, Elsevier, vol. 77(C), pages 130-139.
    2. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    3. Benjamin Henderson & Jussi Lankoski, 2021. "Assessing the Environmental Impacts of Agricultural Policies," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1487-1502, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavinia Popescu & Adela Sorinela Safta, 2024. "Sustainability From The Perspective Of Electromagnetic Waves - Global System For Mobile Communication," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 249-258, October.
    2. Shahbaz, Muhammad & Siddiqui, Aaliyah & Ahmad, Shabbir & Jiao, Zhilun, 2023. "Financial development as a new determinant of energy diversification: The role of natural capital and structural changes in Australia," Energy Economics, Elsevier, vol. 126(C).
    3. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    4. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    5. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    6. Dominique Desbois, 2020. "Economics of Agricultural Carbon Sequestration in Soils," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 24(3), pages 127-128, June.
    7. Pereira Domingues Martinho, Vítor João, 2020. "Comparative analysis of energy costs on farms in the European Union: A nonparametric approach," Energy, Elsevier, vol. 195(C).
    8. Steven Parker, 2024. "Assessing progress in decoupling transport CO2 emissions from GDP growth since 1970," Empirical Economics, Springer, vol. 66(1), pages 27-51, January.
    9. Hao, Yu & Zhang, Tianli & Jing, Leijie & Xiao, Linqi, 2019. "Would the decoupling of electricity occur along with economic growth? Empirical evidence from the panel data analysis for 100 Chinese cities," Energy, Elsevier, vol. 180(C), pages 615-625.
    10. Pierre-Marie Aubert & Baptiste Gardin & Élise Huber & Michele Schiavo & Christophe Alliot, 2021. "Designing Just Transition Pathways: A Methodological Framework to Estimate the Impact of Future Scenarios on Employment in the French Dairy Sector," Agriculture, MDPI, vol. 11(11), pages 1-19, November.
    11. Hou, Aoyu & Liu, Ao & Chai, Li, 2024. "Does reducing income inequality promote the decoupling of economic growth from carbon footprint?," World Development, Elsevier, vol. 173(C).
    12. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
    13. Alletto, Lionel & Vandewalle, Aline & Debaeke, Philippe, 2022. "Crop diversification improves cropping system sustainability: An 8-year on-farm experiment in South-Western France," Agricultural Systems, Elsevier, vol. 200(C).
    14. repec:abq:ijasd1:v:5:y:2023:i:4:p:153-165 is not listed on IDEAS
    15. Vaclovas Miskinis & Arvydas Galinis & Inga Konstantinaviciute & Viktorija Bobinaite & Jarek Niewierowicz & Eimantas Neniskis & Egidijus Norvaisa & Dalius Tarvydas, 2025. "Key Determinants of Energy Intensity and Greenhouse Gas Emission Savings in Commercial and Public Services in the Baltic States," Energies, MDPI, vol. 18(3), pages 1-26, February.
    16. Ke, Yanyan & Cai, Weiguang, 2023. "Breaking the “income-waiting dilemma” to decrease residential building carbon emissions," Energy Policy, Elsevier, vol. 175(C).
    17. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    18. Bikramaditya Ghosh & Spyros Papathanasiou & Vandita Dar & Konstantinos Gravas, 2022. "Bubble in Carbon Credits during COVID-19: Financial Instability or Positive Impact (“Minsky” or “Social”)?," JRFM, MDPI, vol. 15(8), pages 1-16, August.
    19. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    20. Kim, Daesoo & Stoddart, Nick & Rotz, C. Alan & Veltman, Karin & Chase, Larry & Cooper, Joyce & Ingraham, Pete & Izaurralde, R. César & Jones, Curtis D. & Gaillard, Richard & Aguirre-Villegas, Horacio , 2019. "Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes," Agricultural Systems, Elsevier, vol. 176(C).
    21. Kemal Sarica & İlkay Dellal & Esin Tetik Kollugil & Erdinc Ersoy, 2023. "GHG Emission Mitigation of Turkish Agriculture Sector: Potential and Cost Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-22, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbu:jrnlec:y:2022:v:5:p:86-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ecobici Nicolae The email address of this maintainer does not seem to be valid anymore. Please ask Ecobici Nicolae to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fetgjro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.