IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2019i1p187-d302332.html
   My bibliography  Save this article

Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China

Author

Listed:
  • Yujie Huang

    (College of Economics and Trade, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
    These authors contributed equally to this work.)

  • Yang Su

    (College of Economics and Trade, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
    These authors contributed equally to this work.)

  • Ruiliang Li

    (College of Letters and Science, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Haiqing He

    (School of Geomatics, East China University of Technology, Nanchang 330013, China)

  • Haiyan Liu

    (School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China)

  • Feng Li

    (School of business administration, Xinjiang University of Finance and economics, Xinjiang 830012, China)

  • Qin Shu

    (College of Economics and Trade, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China)

Abstract

Due to the importance of understanding the relationship between agricultural growth and environmental quality, we analyzed how high-quality agricultural development can affect carbon emissions in Northwest China. Based on the concept of the environmental Kuznets curve, this study uses provincial panel data from 1993 to 2017 to make empirical analyses inflection point changes and spatio-temporal differences in agricultural carbon emissions. The highlights of our findings are as follows: (1) In Northwest China, there is an inverse N-shape curve, and the critical values are 3578 yuan/hm 2 and 45,738 yuan/hm 2 , respectively. (2) For 2017, the agricultural economic intensity was 50,670 yuan/hm 2 , exceeding the critical value (high inflection point) of 45,738 yuan/hm 2 . (3) Ningxia, Gansu, and Qinghai have not reached the turning point. Having comparable climate, natural conditions, and overall environmental factors, these three provinces would reach the turning point at similar time periods. (4) The average value in agricultural carbon emission intensity in the region is 767.79 kg/hm 2 , and the order based on intensity is Xinjiang > Shaanxi > Ningxia > Gansu > Qinghai.

Suggested Citation

  • Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:187-:d:302332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pellerin, Sylvain & Bamière, Laure & Angers, Denis & Béline, Fabrice & Benoit, Marc & Butault, Jean-Pierre & Chenu, Claire & Colnenne-David, Caroline & De Cara, Stéphane & Delame, Nathalie & Doreau, M, 2017. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture," Environmental Science & Policy, Elsevier, vol. 77(C), pages 130-139.
    2. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    3. Yihui Chen & Minjie Li & Kai Su & Xiaoyong Li, 2019. "Spatial-Temporal Characteristics of the Driving Factors of Agricultural Carbon Emissions: Empirical Evidence from Fujian, China," Energies, MDPI, vol. 12(16), pages 1-23, August.
    4. repec:dau:papers:123456789/13362 is not listed on IDEAS
    5. Christian de Perthuis & Dominic Moran & Erda Lin & Guodong Han & Liping Guo & Xiaotang Ju & Eli Saetnan & Pete Smith & Dali Rani Nayak & Frank Koslowski & Wen Wang, 2014. "Greenhouse gas mitigation in Chinese agriculture: Distinguishing technical and economic potentials," Post-Print hal-01504956, HAL.
    6. Mohanad Ismael & Fathi Srouji & Mohamed Amine Boutabba, 2018. "Agricultural technologies and carbon emissions: evidence from Jordanian economy," Post-Print hal-02877949, HAL.
    7. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    8. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    9. Hanqin Tian & Chaoqun Lu & Philippe Ciais & Anna M. Michalak & Josep G. Canadell & Eri Saikawa & Deborah N. Huntzinger & Kevin R. Gurney & Stephen Sitch & Bowen Zhang & Jia Yang & Philippe Bousquet & , 2016. "The terrestrial biosphere as a net source of greenhouse gases to the atmosphere," Nature, Nature, vol. 531(7593), pages 225-228, March.
    10. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    11. Chuanhe Xiong & Degang Yang & Jinwei Huo, 2016. "Spatial-Temporal Characteristics and LMDI-Based Impact Factor Decomposition of Agricultural Carbon Emissions in Hotan Prefecture, China," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    12. Anthony Lamb & Rhys Green & Ian Bateman & Mark Broadmeadow & Toby Bruce & Jennifer Burney & Pete Carey & David Chadwick & Ellie Crane & Rob Field & Keith Goulding & Howard Griffiths & Astley Hastings , 2016. "The potential for land sparing to offset greenhouse gas emissions from agriculture," Nature Climate Change, Nature, vol. 6(5), pages 488-492, May.
    13. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Huang & Zimin Sun & Pengshu Zhong, 2022. "The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    2. Wen Xiang & Jianzhong Gao, 2023. "From Agricultural Green Production to Farmers’ Happiness: A Case Study of Kiwi Growers in China," IJERPH, MDPI, vol. 20(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihui Chen & Minjie Li & Kai Su & Xiaoyong Li, 2019. "Spatial-Temporal Characteristics of the Driving Factors of Agricultural Carbon Emissions: Empirical Evidence from Fujian, China," Energies, MDPI, vol. 12(16), pages 1-23, August.
    2. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    3. Shuting Liu & Junsong Jia & Hanzhi Huang & Dilan Chen & Yexi Zhong & Yangming Zhou, 2023. "China’s CO 2 Emissions: A Thorough Analysis of Spatiotemporal Characteristics and Sustainable Policy from the Agricultural Land-Use Perspective during 1995–2020," Land, MDPI, vol. 12(6), pages 1-20, June.
    4. Aslan, Alper & Destek, Mehmet Akif & Okumus, İlyas, 2017. "Sectoral carbon emissions and economic growth in the US: Further evidence from rolling window estimation method," MPRA Paper 106961, University Library of Munich, Germany.
    5. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    6. Jiaxing Pang & Hengji Li & Chengpeng Lu & Chenyu Lu & Xingpeng Chen, 2020. "Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China," IJERPH, MDPI, vol. 17(20), pages 1-14, October.
    7. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    8. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    9. Pata, Ugur Korkut, 2018. "The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey," Energy, Elsevier, vol. 160(C), pages 1115-1123.
    10. Mehmet Akif, Destek & Muhammad, Shahbaz & Ilyas, Okumus & Shawkat, Hammoudeh & Avik, Sinha, 2020. "The relationship between economic growth and carbon emissions in G-7 countries: evidence from time-varying parameters with a long history," MPRA Paper 100514, University Library of Munich, Germany, revised Apr 2020.
    11. Kalpana Regmi & Jiajun Qiao & Jamal Hussain & Lochan Kumar Batala, 2022. "The effect of cereal production, cereal harvested area, and cereal yield, and forest on economic growth and environmental performance in Nepal," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(3), pages 739-762, October.
    12. Łukasz Nazarko & Eigirdas Žemaitis & Łukasz Krzysztof Wróblewski & Karel Šuhajda & Magdalena Zajączkowska, 2022. "The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level," Energies, MDPI, vol. 15(4), pages 1-12, February.
    13. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    14. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    16. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    17. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    18. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    19. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    20. Azam, Muhammad & Khan, Abdul Qayyum, 2016. "Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 556-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:187-:d:302332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.