IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v12y2024i1p18n1.html
   My bibliography  Save this article

Optimal allocation of sample size for randomization-based inference from 2K factorial designs

Author

Listed:
  • Ravichandran Arun

    (Department of Statistics, Rutgers University, Piscataway, NJ, USA)

  • Pashley Nicole E.

    (Department of Statistics, Rutgers University, Piscataway, NJ, USA)

  • Libgober Brian

    (Department of Political Science and Law, Northwestern University, Chicago, IL, USA)

  • Dasgupta Tirthankar

    (Department of Statistics, Rutgers University, Piscataway, NJ, USA)

Abstract

Optimizing the allocation of units into treatment groups can help researchers improve the precision of causal estimators and decrease costs when running factorial experiments. However, existing optimal allocation results typically assume a super-population model and that the outcome data come from a known family of distributions. Instead, we focus on randomization-based causal inference for the finite-population setting, which does not require model specifications for the data or sampling assumptions. We propose exact theoretical solutions for optimal allocation in 2 K {2}^{K} factorial experiments under complete randomization with A-, D-, and E-optimality criteria. We then extend this work to factorial designs with block randomization. We also derive results for optimal allocations when using cost-based constraints. To connect our theory to practice, we provide convenient integer-constrained programming solutions using a greedy optimization approach to find integer optimal allocation solutions for both complete and block randomizations. The proposed methods are demonstrated using two real-life factorial experiments conducted by social scientists.

Suggested Citation

  • Ravichandran Arun & Pashley Nicole E. & Libgober Brian & Dasgupta Tirthankar, 2024. "Optimal allocation of sample size for randomization-based inference from 2K factorial designs," Journal of Causal Inference, De Gruyter, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:bpj:causin:v:12:y:2024:i:1:p:18:n:1
    DOI: 10.1515/jci-2023-0046
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2023-0046
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2023-0046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
    2. Philip Oreopoulos & Daniel Lang & Joshua Angrist, 2009. "Incentives and Services for College Achievement: Evidence from a Randomized Trial," American Economic Journal: Applied Economics, American Economic Association, vol. 1(1), pages 136-163, January.
    3. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.
    4. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Pugatch, Todd & Wilson, Nicholas, 2018. "Nudging study habits: A field experiment on peer tutoring in higher education," Economics of Education Review, Elsevier, vol. 62(C), pages 151-161.
    3. Jason M. Lindo & Nicholas J. Sanders & Philip Oreopoulos, 2010. "Ability, Gender, and Performance Standards: Evidence from Academic Probation," American Economic Journal: Applied Economics, American Economic Association, vol. 2(2), pages 95-117, April.
    4. Lea Cassar & Mira Fischer & Vanessa Valero, 2022. "Keep Calm and Carry On: Immediate-vs. Six-Month Effects of Mindfulness Training on Academic Performance," CESifo Working Paper Series 10099, CESifo.
    5. Oswald, Yvonne & Backes-Gellner, Uschi, 2014. "Learning for a bonus: How financial incentives interact with preferences," Journal of Public Economics, Elsevier, vol. 118(C), pages 52-61.
    6. De Paola, Maria & Scoppa, Vincenzo, 2015. "Procrastination, academic success and the effectiveness of a remedial program," Journal of Economic Behavior & Organization, Elsevier, vol. 115(C), pages 217-236.
    7. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Scott E. Carrell & Michal Kurlaender, 2023. "My Professor Cares: Experimental Evidence on the Role of Faculty Engagement," American Economic Journal: Economic Policy, American Economic Association, vol. 15(4), pages 113-141, November.
    9. Ellis, Jimmy R. & Gershenson, Seth, 2016. "LATE for the Meeting: Gender, Peer Advising, and College Success," IZA Discussion Papers 9956, Institute of Labor Economics (IZA).
    10. James Berry, 2015. "Child Control in Education Decisions: An Evaluation of Targeted Incentives to Learn in India," Journal of Human Resources, University of Wisconsin Press, vol. 50(4), pages 1051-1080.
    11. Rodríguez-Planas, Núria & Secor, Alan & De Balanzó Joue, Rafael, 2023. "Resilience-Thinking Training for College Students: Evidence from a Randomized Trial," IZA Discussion Papers 16627, Institute of Labor Economics (IZA).
    12. Joshua D. Angrist & Sarah R. Cohodes & Susan M. Dynarski & Parag A. Pathak & Christopher R. Walters, 2016. "Stand and Deliver: Effects of Boston's Charter High Schools on College Preparation, Entry, and Choice," Journal of Labor Economics, University of Chicago Press, vol. 34(2), pages 275-318.
    13. Angelucci, Manuela & Prina, Silvia & Royer, Heather & Samek, Anya, 2015. "When Incentives Backfire: Spillover Effects in Food Choice," IZA Discussion Papers 9288, Institute of Labor Economics (IZA).
    14. Pekkarinen, Tuomas, 2012. "Gender Differences in Education," IZA Discussion Papers 6390, Institute of Labor Economics (IZA).
    15. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Jun 2025.
    16. Eric P. Bettinger, 2012. "Paying to Learn: The Effect of Financial Incentives on Elementary School Test Scores," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 686-698, August.
    17. Damon Clark & David Gill & Victoria Prowse & Mark Rush, 2020. "Using Goals to Motivate College Students: Theory and Evidence From Field Experiments," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 648-663, October.
    18. Islam, Asad & Kwon, Sungoh & Masood, Eema & Prakash, Nishith & Sabarwal, Shwetlena & Saraswat, Deepak, 2020. "When Goal-Setting Forges Ahead but Stops Short," GLO Discussion Paper Series 526, Global Labor Organization (GLO).
    19. Borghans, Lex & Meijers, Huub & ter Weel, Bas, 2013. "The importance of intrinsic and extrinsic motivation for measuring IQ," Economics of Education Review, Elsevier, vol. 34(C), pages 17-28.
    20. Derksen, Laura & Kerwin, Jason Theodore & Reynoso, Natalia Ordaz & Sterck, Olivier, 2021. "Appointments: A More Effective Commitment Device for Health Behaviors," SocArXiv y8gh7, Center for Open Science.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:12:y:2024:i:1:p:18:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.