IDEAS home Printed from https://ideas.repec.org/a/bpj/bejtec/v8y2009i1n29.html
   My bibliography  Save this article

A Constructive Proof that Learning in Repeated Games Leads to Nash Equilibria

Author

Listed:
  • Leoni Patrick L

    () (University of Southern Denmark)

Abstract

This paper extends the convergence result in Kalai and Lehrer (1993a, 1993b) to a class of games where players have a payoff function continuous for the product topology. Provided that 1) every player maximizes her expected payoff against her own beliefs, 2) every player updates her beliefs in a Bayesian manner, and 3) prior beliefs of other players' strategies have a grain of truth, we construct a Nash equilibrium such that, after some finite time, the equilibrium outcome of the above game is arbitrarily close to the constructed Nash equilibrium.

Suggested Citation

  • Leoni Patrick L, 2009. "A Constructive Proof that Learning in Repeated Games Leads to Nash Equilibria," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 8(1), pages 1-20, January.
  • Handle: RePEc:bpj:bejtec:v:8:y:2009:i:1:n:29
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/bejte.2008.8.1/bejte.2008.8.1.1462/bejte.2008.8.1.1462.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalai, Ehud & Lehrer, Ehud, 1993. "Rational Learning Leads to Nash Equilibrium," Econometrica, Econometric Society, vol. 61(5), pages 1019-1045, September.
    2. Fudenberg, Drew & Levine, David K, 1993. "Self-Confirming Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 523-545, May.
    3. John H. Nachbar, 2005. "Beliefs in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 459-480, March.
    4. Kalai, Ehud & Lehrer, Ehud, 1993. "Subjective Equilibrium in Repeated Games," Econometrica, Econometric Society, vol. 61(5), pages 1231-1240, September.
    5. Sandroni, Alvaro, 1998. "Does Rational Learning Lead to Nash Equilibrium in Finitely Repeated Games?," Journal of Economic Theory, Elsevier, vol. 78(1), pages 195-218, January.
    6. Sandroni, Alvaro, 1998. "Necessary and Sufficient Conditions for Convergence to Nash Equilibrium: The Almost Absolute Continuity Hypothesis," Games and Economic Behavior, Elsevier, vol. 22(1), pages 121-147, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:bejtec:v:8:y:2009:i:1:n:29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.