IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v76y2022i2p124-163.html
   My bibliography  Save this article

Log‐symmetric quantile regression models

Author

Listed:
  • Helton Saulo
  • Alan Dasilva
  • Víctor Leiva
  • Luis Sánchez
  • Hanns de la Fuente‐Mella

Abstract

Regression models based on the log‐symmetric family of distributions are particularly useful when the response variable is continuous, positive, and asymmetrically distributed. In this article, we propose and derive a class of models based on a new approach to quantile regression using log‐symmetric distributions parameterized by means of their quantiles. Two Monte Carlo simulation studies are conducted utilizing the R software. The first one analyzes the performance of the maximum likelihood estimators, the Akaike, Bayesian, and corrected Akaike information criteria, and the generalized Cox–Snell and random quantile residuals. The second one evaluates the size and power of the Wald, likelihood ratio, score, and gradient tests. A web‐scraped box‐office data set of the movie industry is analyzed to illustrate the proposed approach. Within the main results of the simulation carried out, the good performance of the maximum likelihood estimators is reported.

Suggested Citation

  • Helton Saulo & Alan Dasilva & Víctor Leiva & Luis Sánchez & Hanns de la Fuente‐Mella, 2022. "Log‐symmetric quantile regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 124-163, May.
  • Handle: RePEc:bla:stanee:v:76:y:2022:i:2:p:124-163
    DOI: 10.1111/stan.12243
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12243
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gilberto A. Paula & Víctor Leiva & Michelli Barros & Shuangzhe Liu, 2012. "Robust statistical modeling using the Birnbaum‐Saunders‐t distribution applied to insurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(1), pages 16-34, January.
    2. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    3. Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2020. "Birnbaum-Saunders Quantile Regression Models with Application to Spatial Data," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    4. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    5. Milan Stehlík & Rastislav Potocký & Helmut Waldl & Zdeněk Fabián, 2010. "On the favorable estimation for fitting heavy tailed data," Computational Statistics, Springer, vol. 25(3), pages 485-503, September.
    6. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Suelena S. Rocha & Patrícia L. Espinheira & Francisco Cribari‐Neto, 2021. "Residual and local influence analyses for unit gamma regressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 137-160, May.
    9. Luis Hernando Vanegas & Gilberto A. Paula, 2017. "Log-symmetric regression models under the presence of non-informative left- or right-censored observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 405-428, June.
    10. Luis Vanegas & Gilberto Paula, 2015. "A semiparametric approach for joint modeling of median and skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 110-135, March.
    11. Marcelo Bourguignon & Diego I. Gallardo, 2020. "Reparameterized inverse gamma regression models with varying precision," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 611-627, November.
    12. Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2021. "Birnbaum‐Saunders quantile regression and its diagnostics with application to economic data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 53-73, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danúbia R. Cunha & Jose Angelo Divino & Helton Saulo, 2024. "Zero-Adjusted Log-Symmetric Quantile Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2087-2111, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danúbia R. Cunha & Jose Angelo Divino & Helton Saulo, 2024. "Zero-Adjusted Log-Symmetric Quantile Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2087-2111, May.
    2. Danúbia R. Cunha & Jose Angelo Divino & Helton Saulo, 2022. "On a log-symmetric quantile tobit model applied to female labor supply data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(16), pages 4225-4253, December.
    3. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    4. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    5. Qu, Zhaopeng (Frank) & Zhao, Zhong, 2008. "Urban-Rural Consumption Inequality in China from 1988 to 2002: Evidence from Quantile Regression Decomposition," IZA Discussion Papers 3659, Institute of Labor Economics (IZA).
    6. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    7. Sánchez-Jabba, Andrés Mauricio, 2014. "Etnia y rendimiento académico en Colombia," Chapters, in: Sánchez Jabba, Andrés & Otero Cortés, Andrea (ed.), Educación y desarrollo regional en Colombia, chapter 2, pages 59-100, Banco de la Republica de Colombia.
    8. Wang, Wen & Lien, Donald, 2018. "Union membership, union coverage and wage dispersion of rural migrants: Evidence from Suzhou industrial sector," China Economic Review, Elsevier, vol. 49(C), pages 96-113.
    9. João Pereira & Aurora Galego, 2014. "Inter-Regional Wage Differentials in Portugal: An Analysis Across the Wage Distribution," Regional Studies, Taylor & Francis Journals, vol. 48(9), pages 1529-1546, September.
    10. Akwasi Ampofo, 2021. "Oil at work: natural resource effects on household well-being in Ghana," Empirical Economics, Springer, vol. 60(2), pages 1013-1058, February.
    11. Collischon Matthias, 2019. "Is There a Glass Ceiling over Germany?," German Economic Review, De Gruyter, vol. 20(4), pages 329-359, December.
    12. Pham, Thai-Hung & Reilly, Barry, 2007. "The gender pay gap in Vietnam, 1993-2002: A quantile regression approach," Journal of Asian Economics, Elsevier, vol. 18(5), pages 775-808, October.
    13. Costa-Font, Joan & Fabbri, Daniele & Gil, Joan, 2009. "Decomposing body mass index gaps between Mediterranean countries: A counterfactual quantile regression analysis," Economics & Human Biology, Elsevier, vol. 7(3), pages 351-365, December.
    14. Juan Canal-Domínguez & César Rodríguez-Gutiérrez, 2008. "Analysis of wage differences between native and immigrant workers in Spain," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(2), pages 109-134, June.
    15. Sonja C. Kassenboehmer & Mathias G. Sinning, 2014. "Distributional Changes in the Gender Wage Gap," ILR Review, Cornell University, ILR School, vol. 67(2), pages 335-361, April.
    16. Deshpande, Ashwini & Goel, Deepti & Khanna, Shantanu, 2018. "Bad Karma or Discrimination? Male–Female Wage Gaps Among Salaried Workers in India," World Development, Elsevier, vol. 102(C), pages 331-344.
    17. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    18. Dohmen, Thomas & Lehmann, Hartmut & Zaiceva, Anzelika, 2008. "The gender earnings gap inside a Russian firm : first evidence from personnel data - 1997 to 2002," Zeitschrift für ArbeitsmarktForschung - Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 41(2/3), pages 157-179.
    19. Jing Zhang & Colin Brown, 2018. "Spatial Variation and Factors Impacting Grassland Circulation Price in Inner Mongolia, China," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    20. Simona COMI & Mara GRASSENI, 2009. "Are Temporary Workers Discriminated Against? Evidence from Europe," CHILD Working Papers wp17_09, CHILD - Centre for Household, Income, Labour and Demographic economics - ITALY.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:76:y:2022:i:2:p:124-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.