IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v43y2016i2p374-381.html
   My bibliography  Save this article

Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models

Author

Listed:
  • Søren Johansen
  • Bent Nielsen

Abstract

No abstract is available for this item.

Suggested Citation

  • Søren Johansen & Bent Nielsen, 2016. "Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 374-381, June.
  • Handle: RePEc:bla:scjsta:v:43:y:2016:i:2:p:374-381
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12211
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    3. Vassili Bazinas & Bent Nielsen, 2015. "Causal transmission in reduced-form models," Economics Papers 2015-W07, Economics Group, Nuffield College, University of Oxford.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    2. Donatella Baiardi & Claudio Morana, 2020. "Climate change awareness: Empirical evidence for the European Union," Working Papers 426, University of Milano-Bicocca, Department of Economics, revised Feb 2021.
    3. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    4. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, Open Access Journal, vol. 8(2), pages 1-24, May.
    5. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    6. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "The analysis of marked and weighted empirical processes of estimated residuals," Economics Papers 2019-W03, Economics Group, Nuffield College, University of Oxford.
    7. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," CREATES Research Papers 2019-12, Department of Economics and Business Economics, Aarhus University.
    8. Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
    9. Jennifer Castle & David Hendry, 2016. "Policy Analysis, Forediction, and Forecast Failure," Economics Series Working Papers 809, University of Oxford, Department of Economics.
    10. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    11. Vanessa Berenguer Rico & Bent Nielsen, 2017. "Marked and Weighted Empirical Processes of Residuals with Applications to Robust Regressions," Economics Series Working Papers 841, University of Oxford, Department of Economics.
    12. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    13. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    14. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, Open Access Journal, vol. 5(3), pages 1-27, September.
    15. Corbellini, Aldo & Magnani, Marco & Morelli, Gianluca, 2021. "Labor market analysis through transformations and robust multivariate models," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    16. Anthony C. Atkinson & Andrea Cerioli & Marco Riani, 2016. "Discussion of ‘Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models’ by Johansen and Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 349-352, June.
    17. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, Open Access Journal, vol. 7(1), pages 1-24, January.
    18. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Robust Discovery of Regression Models," Economics Papers 2020-W04, Economics Group, Nuffield College, University of Oxford.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & Lukasz Gatarek, 2014. "Optimal hedging with the cointegrated vector autoregressive model," CREATES Research Papers 2014-40, Department of Economics and Business Economics, Aarhus University.
    2. Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," Economics Papers 2014-W04, Economics Group, Nuffield College, University of Oxford.
    3. Jan Kalina, 2012. "On Multivariate Methods in Robust Econometrics," Prague Economic Papers, Prague University of Economics and Business, vol. 2012(1), pages 69-82.
    4. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    5. Sule Akkoyunlu, 2009. "Trade, aid, remittances and migration," KOF Working papers 09-229, KOF Swiss Economic Institute, ETH Zurich.
    6. Selva Demiralp & Kevin D. Hoover & Stephen J. Perez, 2008. "A Bootstrap Method for Identifying and Evaluating a Structural Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 509-533, August.
    7. Lux, Thomas, 2008. "Sentiment dynamics and stock returns: the case of the German stock market," Kiel Working Papers 1470, Kiel Institute for the World Economy (IfW).
    8. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    9. Bårdsen Gunnar & Hurn Stanley & McHugh Zöe, 2012. "Asymmetric Unemployment Rate Dynamics in Australia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-22, January.
    10. Geert Bekaert & Campbell R. Harvey & Christian T. Lundblad & Stephan Siegel, 2011. "What Segments Equity Markets?," Review of Financial Studies, Society for Financial Studies, vol. 24(12), pages 3841-3890.
    11. Barkbu, Bergljot Bjornson & Nymoen, Ragnar & Roed, Knut, 2003. "Wage coordination and unemployment dynamics in Norway and Sweden," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 37-58, March.
    12. Brainerd, Elizabeth & Siegler, Mark V, 2003. "The Economic Effects of the 1918 Influenza Epidemic," CEPR Discussion Papers 3791, C.E.P.R. Discussion Papers.
    13. Atkinson, Anthony C., 2020. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.
    14. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    15. Ronelle Burger, & Stan du Plessis, 2006. "Examining the Robustness of Competing Explanations of Slow Growth in African Countries," Discussion Papers 06/02, University of Nottingham, CREDIT.
    16. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    17. Emmanuel Michaux & Éric Dubois, 2006. "Étalonnages à l’aide d’enquêtes de conjoncture : de nouveaux résultats," Économie et Prévision, Programme National Persée, vol. 172(1), pages 11-28.
    18. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    19. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    20. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:43:y:2016:i:2:p:374-381. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.