IDEAS home Printed from
   My bibliography  Save this article

Generalization of Jeffreys divergence-based priors for Bayesian hypothesis testing


  • M. J. Bayarri
  • G. García-Donato


We introduce objective proper prior distributions for hypothesis testing and model selection based on measures of divergence between the competing models; we call them "divergence-based" (DB) priors. DB priors have simple forms and desirable properties like information (finite sample) consistency and are often similar to other existing proposals like intrinsic priors. Moreover, in normal linear model scenarios, they reproduce the Jeffreys-Zellner-Siow priors exactly. Most importantly, in challenging scenarios such as irregular models and mixture models, DB priors are well defined and very reasonable, whereas alternative proposals are not. We derive approximations to the DB priors as well as Markov chain Monte Carlo and asymptotic expressions for the associated Bayes factors. Copyright (c) 2008 Royal Statistical Society.

Suggested Citation

  • M. J. Bayarri & G. García-Donato, 2008. "Generalization of Jeffreys divergence-based priors for Bayesian hypothesis testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:5:p:981-1003

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
    2. José Bernardo, 2005. "Intrinsic credible regions: An objective Bayesian approach to interval estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 317-384, December.
    3. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:testjl:v:26:y:2017:i:2:d:10.1007_s11749-016-0516-0 is not listed on IDEAS
    2. repec:eee:stapro:v:137:y:2018:i:c:p:292-296 is not listed on IDEAS
    3. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2017. "Objective Bayesian testing on the common mean of several normal distributions under divergence-based priors," Computational Statistics, Springer, vol. 32(1), pages 71-91, March.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:5:p:981-1003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.