IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i2p471-492.html
   My bibliography  Save this article

Identifying the effect of public holidays on daily demand for gas

Author

Listed:
  • Sarah E. Heaps
  • Malcolm Farrow
  • Kevin J. Wilson

Abstract

To reduce operational costs and to ensure security of supply, gas distribution networks require accurate forecasts of the demand for gas. Among domestic and commercial customers, demand relates primarily to the weather and patterns of life and work. Public holidays have a pronounced effect which often spreads into neighbouring days. We call this spread the ‘proximity effect’. Traditionally, the days over which the proximity effect is felt are prespecified in fixed windows around each holiday, allowing no uncertainty in their identification. We are motivated by an application to modelling daily gas demand in two large British regions. We introduce a novel model which does not fix the days on which the proximity effect is felt. Our approach uses a four‐state, non‐homogeneous hidden Markov model, with cyclic dynamics, where the classification of days as public holidays is observed, but the assignment of days as ‘pre‐holiday’, ‘post‐holiday’ or ‘normal’ days is unknown. The number of days to the preceding and succeeding holidays guide transitions between states. We apply Bayesian inference and illustrate the benefit of our modelling approach. A version of the model is now being used by one of the UK's regional distribution networks.

Suggested Citation

  • Sarah E. Heaps & Malcolm Farrow & Kevin J. Wilson, 2020. "Identifying the effect of public holidays on daily demand for gas," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 471-492, February.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:2:p:471-492
    DOI: 10.1111/rssa.12504
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12504
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akouemo, Hermine N. & Povinelli, Richard J., 2016. "Probabilistic anomaly detection in natural gas time series data," International Journal of Forecasting, Elsevier, vol. 32(3), pages 948-956.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    4. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    5. Marek Brabec & Ondřej Konár & Marek Malý & Emil Pelikán & Jiří Vondráček, 2009. "A statistical model for natural gas standardized load profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 123-139, February.
    6. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    7. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    8. Charlton, Nathaniel & Singleton, Colin, 2014. "A refined parametric model for short term load forecasting," International Journal of Forecasting, Elsevier, vol. 30(2), pages 364-368.
    9. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    10. Dodds, Paul E. & McDowall, Will, 2013. "The future of the UK gas network," Energy Policy, Elsevier, vol. 60(C), pages 305-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    2. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    3. Marta P. Fernandes & Joaquim L. Viegas & Susana M. Vieira & João M. C. Sousa, 2017. "Segmentation of Residential Gas Consumers Using Clustering Analysis," Energies, MDPI, vol. 10(12), pages 1-26, December.
    4. Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
    5. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    6. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    7. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 24-54, March.
    8. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    9. Hongshen Li & Shizhong Li, 2020. "Optimization of Continuous Solid-State Distillation Process for Cost-Effective Bioethanol Production," Energies, MDPI, vol. 13(4), pages 1-21, February.
    10. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    11. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    12. Cappelen, Alexander W. & Sørensen, Erik Ø. & Tungodden, Bertil & Xu, Xiaogeng, 2025. "Risk taking on behalf of others: Does the timing of uncertainty revelation matter?," Discussion Paper Series in Economics 13/2025, Norwegian School of Economics, Department of Economics.
    13. George C. Efthimiou & Panos Kalimeris & Spyros Andronopoulos & John G. Bartzis, 2018. "Statistical Projection of Material Intensity: Evidence from the Global Economy and 107 Countries," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1465-1472, December.
    14. Jose Pina-Sánchez & John Paul Gosling, 2020. "Tackling selection bias in sentencing data analysis: a new approach based on a scale of severity," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 1047-1073, June.
    15. Shuo-Fang Liu & Yu-Shan Wei & Hong-Kai Guo & An-Yu Su, 2023. "An Application of Quality Function Deployment to Explore a Product Design Concept—A Case Study of a Triple-Effect Green Energy Generator for the Taiwan Environment," Sustainability, MDPI, vol. 15(24), pages 1-16, December.
    16. Feihu Jiang & Chaohong Wang & Yu Shi & Xudong Zhang, 2024. "Exploration of Research Hotspots and Trends in Photovoltaic Landscape Studies Based on Citespace Analysis," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
    17. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    18. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    19. Kahia, Montassar & Moulahi, Tarek & Mahfoudhi, Sami & Boubaker, Sabri & Omri, Anis, 2022. "A machine learning process for examining the linkage among disaggregated energy consumption, economic growth, and environmental degradation," Resources Policy, Elsevier, vol. 79(C).
    20. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:2:p:471-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.