IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i1p203-228.html
   My bibliography  Save this article

Multi‐source Statistics: Basic Situations and Methods

Author

Listed:
  • Ton de Waal
  • Arnout van Delden
  • Sander Scholtus

Abstract

Many National Statistical Institutes (NSIs), especially in Europe, are moving from single‐source statistics to multi‐source statistics. By combining data sources, NSIs can produce more detailed and more timely statistics and respond more quickly to events in society. By combining survey data with already available administrative data and Big Data, NSIs can save data collection and processing costs and reduce the burden on respondents. However, multi‐source statistics come with new problems that need to be overcome before the resulting output quality is sufficiently high and before those statistics can be produced efficiently. What complicates the production of multi‐source statistics is that they come in many different varieties as data sets can be combined in many different ways. Given the rapidly increasing importance of producing multi‐source statistics in Official Statistics, there has been considerable research activity in this area over the last few years, and some frameworks have been developed for multi‐source statistics. Useful as these frameworks are, they generally do not give guidelines to which method could be applied in a certain situation arising in practice. In this paper, we aim to fill that gap, structure the world of multi‐source statistics and its problems and provide some guidance to suitable methods for these problems.

Suggested Citation

  • Ton de Waal & Arnout van Delden & Sander Scholtus, 2020. "Multi‐source Statistics: Basic Situations and Methods," International Statistical Review, International Statistical Institute, vol. 88(1), pages 203-228, April.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:203-228
    DOI: 10.1111/insr.12352
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12352
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hang J. Kim & Jerome P. Reiter & Quanli Wang & Lawrence H. Cox & Alan F. Karr, 2014. "Multiple Imputation of Missing or Faulty Values Under Linear Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 375-386, July.
    2. Reinier Bikker & Jacco Daalmans & Nino Mushkudiani, 2013. "Benchmarking Large Accounting Frameworks: A Generalized Multivariate Model," Economic Systems Research, Taylor & Francis Journals, vol. 25(4), pages 390-408, December.
    3. Di Consiglio Loredana & Tuoto Tiziana, 2015. "Coverage Evaluation on Probabilistically Linked Data," Journal of Official Statistics, Sciendo, vol. 31(3), pages 415-429, September.
    4. Coutinho Wieger & Waal Ton de & Shlomo Natalie, 2013. "Calibrated Hot-Deck Donor Imputation Subject to Edit Restrictions," Journal of Official Statistics, Sciendo, vol. 29(2), pages 299-321, September.
    5. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Details and Extensions," Sociological Methods & Research, , vol. 46(3), pages 342-369, August.
    6. Pier Luigi Conti & Daniela Marella & Andrea Neri, 2017. "Statistical matching and uncertainty analysis in combining household income and expenditure data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 485-505, August.
    7. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    8. Bart F. M. Bakker, 2012. "Estimating the validity of administrative variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(1), pages 8-17, February.
    9. Richard Stone & D. G. Champernowne & J. E. Meade, 1942. "The Precision of National Income Estimates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 9(2), pages 111-125.
    10. Jan R. Magnus & Jan W. van Tongeren & Aart F. de Vos, 2000. "National Accounts Estimation Using Indicator Ratios," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 46(3), pages 329-350, September.
    11. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    12. Li‐Chun Zhang, 2012. "Topics of statistical theory for register‐based statistics and data integration," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(1), pages 41-63, February.
    13. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    14. repec:bla:revinw:v:46:y:2000:i:3:p:329-50 is not listed on IDEAS
    15. repec:taf:jnlbes:v:30:y:2012:i:2:p:191-201 is not listed on IDEAS
    16. Di Cecco Davide & Di Zio Marco & Filipponi Danila & Rocchetti Irene, 2018. "Population Size Estimation Using Multiple Incomplete Lists with Overcoverage," Journal of Official Statistics, Sciendo, vol. 34(2), pages 557-572, June.
    17. Boeschoten Laura & Oberski Daniel & de Waal Ton, 2017. "Estimating Classification Errors Under Edit Restrictions in Composite Survey-Register Data Using Multiple Imputation Latent Class Modelling (MILC)," Journal of Official Statistics, Sciendo, vol. 33(4), pages 921-962, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camboni, Riccardo & Corsini, Alberto & Miniaci, Raffaele & Valbonesi, Paola, 2021. "Mapping fuel poverty risk at the municipal level. A small-scale analysis of Italian Energy Performance Certificate, census and survey data," Energy Policy, Elsevier, vol. 155(C).
    2. Szymkowiak Marcin & Wilak Kamil, 2021. "Repeated weighting in mixed-mode censuses," Economics and Business Review, Sciendo, vol. 7(1), pages 26-46, March.
    3. Roberta Varriale & Marco Alfo’, 2023. "Multi-source statistics on employment status in Italy, a machine learning approach," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 37-63, April.
    4. Rocci Fabiana & Varriale Roberta & Luzi Orietta, 2022. "Total Process Error: An Approach for Assessing and Monitoring the Quality of Multisource Processes," Journal of Official Statistics, Sciendo, vol. 38(2), pages 533-556, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    2. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    3. Geoffrey Brent, 2018. "Maximum likelihood estimation framework for table‐balancing adjustments," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 520-532, November.
    4. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    5. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    6. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    7. Kim Abildgren, 2016. "A century of macro-financial linkages," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 8(4), pages 458-471, November.
    8. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    9. Pieroni, Luca & d'Agostino, Giorgio & Lorusso, Marco, 2008. "Can we declare military Keynesianism dead?," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 675-691.
    10. Campbell Leith & Jim Malley, 2007. "A Sectoral Analysis of Price-Setting Behavior in U.S. Manufacturing Industries," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 335-342, May.
    11. Jürgen Bierbaumer & Sandra Bilek-Steindl, 2017. "Quarterly National Accounts – Manual for Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 60427.
    12. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    13. Wenzel, Lars & Wolf, André, 2013. "Short-term forecasting with business surveys: Evidence for German IHK data at federal state level," HWWI Research Papers 140, Hamburg Institute of International Economics (HWWI).
    14. Emanuel Mönch & Harald Uhlig, 2005. "Towards a Monthly Business Cycle Chronology for the Euro Area," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(1), pages 43-69.
    15. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    16. Tao Zha & Kaiji Chen, 2017. "The Asymmetric Transmission of China's Monetary Policy," 2017 Meeting Papers 516, Society for Economic Dynamics.
    17. David Aristei & Luca Pieroni, 2005. "Estimating the Role of Government Expenditure in Long-run Consumption," Quaderni del Dipartimento di Economia, Finanza e Statistica 13/2005, Università di Perugia, Dipartimento Economia.
    18. Umed Temursho, 2018. "Entropy‐based benchmarking methods," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 421-446, November.
    19. Ana María Cerro & José Pineda, 2002. "Latin American growth cycles. Empirical evidence: 1960 - 2000," Estudios de Economia, University of Chile, Department of Economics, vol. 29(1 Year 20), pages 89-108, June.
    20. Raffaella Basile & Bruno Chiarini & Elisabetta Marzano, 2011. "Can we Rely upon Fiscal Policy Estimates in Countries with Unreported Production of 15 Per Cent (or more) of GDP?," CESifo Working Paper Series 3521, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:203-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.