IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i4p1170-1177.html
   My bibliography  Save this article

Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study

Author

Listed:
  • Phenyo E. Lekone
  • Bärbel F. Finkenstädt

Abstract

No abstract is available for this item.

Suggested Citation

  • Phenyo E. Lekone & Bärbel F. Finkenstädt, 2006. "Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study," Biometrics, The International Biometric Society, vol. 62(4), pages 1170-1177, December.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1170-1177
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00609.x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    2. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    3. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    4. Paul Fearnhead & Loukia Meligkotsidou, 2004. "Exact filtering for partially observed continuous time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 771-789, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Ebola

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    2. Luiz Hotta, 2010. "Bayesian Melding Estimation of a Stochastic SEIR Model," Mathematical Population Studies, Taylor & Francis Journals, vol. 17(2), pages 101-111.
    3. Kamara, Abdul A. & Wang, Xiangjun & Mouanguissa, Lagès Nadège, 2020. "Analytical solution for post-death transmission model of Ebola epidemics," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    4. Erik Pruyt & Willem L. Auping & Jan H. Kwakkel, 2015. "Ebola in West Africa: Model-Based Exploration of Social Psychological Effects and Interventions," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(1), pages 2-14, January.
    5. McKinley Trevelyan & Cook Alex R & Deardon Robert, 2009. "Inference in Epidemic Models without Likelihoods," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-40, July.
    6. Aaron T. Porter & Jacob J. Oleson, 2013. "A Path-Specific SEIR Model for use with General Latent and Infectious Time Distributions," Biometrics, The International Biometric Society, vol. 69(1), pages 101-108, March.
    7. Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
    8. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    9. Ndanguza, Denis & Mbalawata, Isambi S. & Haario, Heikki & Tchuenche, Jean M., 2017. "Analysis of bias in an Ebola epidemic model by extended Kalman filter approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 142(C), pages 113-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1170-1177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.