IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i4d10.1007_s11009-023-10056-9.html
   My bibliography  Save this article

Flexible Bayesian Inference for Diffusion Processes using Splines

Author

Listed:
  • Paul A. Jenkins

    (University of Warwick
    University of Warwick
    The Alan Turing Institute)

  • Murray Pollock

    (The Alan Turing Institute
    Newcastle University)

  • Gareth O. Roberts

    (University of Warwick
    The Alan Turing Institute)

Abstract

We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.

Suggested Citation

  • Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2023. "Flexible Bayesian Inference for Diffusion Processes using Splines," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-24, December.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:4:d:10.1007_s11009-023-10056-9
    DOI: 10.1007/s11009-023-10056-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10056-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10056-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Meulen, Frank & Schauer, Moritz & van Zanten, Harry, 2014. "Reversible jump MCMC for nonparametric drift estimation for diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 615-632.
    2. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "A Factorisation of Diffusion Measure and Finite Sample Path Constructions," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 85-104, March.
    3. Giorgos Sermaidis & Omiros Papaspiliopoulos & Gareth O. Roberts & Alexandros Beskos & Paul Fearnhead, 2013. "Markov Chain Monte Carlo for Exact Inference for Diffusions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 294-321, June.
    4. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    5. Frank Meulen & Moritz Schauer & Jan Waaij, 2018. "Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 603-628, October.
    6. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    7. Stanton, Richard, 1997. "A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
    8. Omiros Papaspiliopoulos & Yvo Pokern & Gareth O. Roberts & Andrew M. Stuart, 2012. "Nonparametric estimation of diffusions: a differential equations approach," Biometrika, Biometrika Trust, vol. 99(3), pages 511-531.
    9. Bali, Turan G. & Wu, Liuren, 2006. "A comprehensive analysis of the short-term interest-rate dynamics," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1269-1290, April.
    10. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    11. Pokern, Y. & Stuart, A.M. & van Zanten, J.H., 2013. "Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 603-628.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
    2. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    3. Lubrano, Michel, 2004. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 465-499, Juin-Sept.
    4. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    5. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    6. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    7. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    8. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    9. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    10. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modelling Multivariate Interest Rates using Time-Varying Copulas and Reducible Non-Linear Stochastic Differential," Economics Working Papers 09-02, Queen's Management School, Queen's University Belfast.
    11. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    12. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    13. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modeling Multivariate Interest Rates using Time-Varying Copulas and Reducible Stochastic Differential Equations," Working Papers halshs-00408014, HAL.
    14. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    15. S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
    16. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    17. Libo Sun & Chihoon Lee & Jennifer A. Hoeting, 2019. "A penalized simulated maximum likelihood method to estimate parameters for SDEs with measurement error," Computational Statistics, Springer, vol. 34(2), pages 847-863, June.
    18. repec:wyi:journl:002109 is not listed on IDEAS
    19. Kristensen, Dennis & Lee, Young Jun & Mele, Antonio, 2024. "Closed-form approximations of moments and densities of continuous–time Markov models," Journal of Economic Dynamics and Control, Elsevier, vol. 168(C).
    20. Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
    21. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:4:d:10.1007_s11009-023-10056-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.