Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2019.01.006
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
- Kohn, R. & Quiroz, M. & Tran, M.-N. & Villani, M., 2016. "Block-Wise Pseudo-Marginal Metropolis-Hastings," Working Papers 2016-03, University of Sydney Business School, Discipline of Business Analytics.
- McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
- P. D. O’Neill & G. O. Roberts, 1999. "Bayesian inference for partially observed stochastic epidemics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 121-129.
- Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
- Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Mathieu Gerber & Nicolas Chopin, 2015. "Sequential quasi Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 509-579, June.
- Colin S. Gillespie & Andrew Golightly, 2010. "Bayesian inference for generalized stochastic population growth models with application to aphids," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 341-357, March.
- George Deligiannidis & Arnaud Doucet & Michael K. Pitt, 2018. "The correlated pseudomarginal method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 839-870, November.
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
- Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013.
"Advanced MCMC methods for sampling on diffusion pathspace,"
Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
- Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," LSE Research Online Documents on Economics 46433, London School of Economics and Political Science, LSE Library.
- Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
- Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019.
"Speeding Up MCMC by Efficient Data Subsampling,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
- Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Speeding Up Mcmc By Efficient Data Subsampling," Working Paper Series 297, Sveriges Riksbank (Central Bank of Sweden).
- Kohn, Robert & Quiroz, Matias & Tran, Minh-Ngoc & Villani, Mattias, 2016. "Speeding up MCMC by Efficient Data Subsampling," Working Papers 2123/16205, University of Sydney Business School, Discipline of Business Analytics.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Nason, Jason M. & Smith, Gregor W., 2013. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," Queen's Economics Department Working Papers 274641, Queen's University - Department of Economics.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2023. "Flexible Bayesian Inference for Diffusion Processes using Splines," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-24, December.
- Mogens Bladt & Samuel Finch & Michael Sørensen, 2016.
"Simulation of multivariate diffusion bridges,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
- Mogens Bladt & Samuel Finch & Michael Sørensen, 2014. "Simulation of multivariate diffusion bridges," CREATES Research Papers 2014-16, Department of Economics and Business Economics, Aarhus University.
- Peavoy, Daniel & Franzke, Christian L.E. & Roberts, Gareth O., 2015. "Systematic physics constrained parameter estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 182-199.
- Chris Sherlock, 2016. "Optimal Scaling for the Pseudo-Marginal Random Walk Metropolis: Insensitivity to the Noise Generating Mechanism," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 869-884, September.
- Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:136:y:2019:i:c:p:92-107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v136y2019icp92-107.html