IDEAS home Printed from https://ideas.repec.org/a/bla/acctfi/v53y2013i4p1149-1174.html
   My bibliography  Save this article

Characteristics of failed U.S. commercial banks: an exploratory study

Author

Listed:
  • Fatima Alali
  • Silvia Romero

Abstract

No abstract is available for this item.

Suggested Citation

  • Fatima Alali & Silvia Romero, 2013. "Characteristics of failed U.S. commercial banks: an exploratory study," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(4), pages 1149-1174, December.
  • Handle: RePEc:bla:acctfi:v:53:y:2013:i:4:p:1149-1174
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-629X.2012.00491.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    2. Varetto, Franco, 1998. "Genetic algorithms applications in the analysis of insolvency risk," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1421-1439, October.
    3. David C. Wheelock & Paul W. Wilson, 2000. "Why do Banks Disappear? The Determinants of U.S. Bank Failures and Acquisitions," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 127-138, February.
    4. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    5. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    6. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    7. Pettway, Richard H & Sinkey, Joseph F, Jr, 1980. "Establishing On-Site Bank Examination Priorities: An Early-Warning System Using Accounting and Market Information," Journal of Finance, American Finance Association, vol. 35(1), pages 137-150, March.
    8. James B. Thomson, 1991. "Predicting bank failures in the 1980s," Economic Review, Federal Reserve Bank of Cleveland, vol. 27(Q I), pages 9-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Venuka Aggarwal & Khushdeep Dharni, 2020. "Deshelling the Shell Companies Using Benford’s Law: An Emerging Market Study," Vikalpa: The Journal for Decision Makers, , vol. 45(3), pages 160-169, September.
    2. Ausloos, Marcel & Ficcadenti, Valerio & Dhesi, Gurjeet & Shakeel, Muhammad, 2021. "Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Qing L. Burke & Terry D. Warfield, 2021. "Bank interest rate risk management and valuation of earnings," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4287-4337, September.
    4. Katherine Uylangco & Siqiwen Li, 2016. "An evaluation of the effectiveness of Value-at-Risk (VaR) models for Australian banks under Basel III," Australian Journal of Management, Australian School of Business, vol. 41(4), pages 699-718, November.
    5. Dunn, Jessica Kay & Intintoli, Vincent J. & McNutt, Jamie John, 2015. "An examination of non-government-assisted US commercial bank mergers during the financial crisis," Journal of Economics and Business, Elsevier, vol. 77(C), pages 16-41.
    6. Carmelo Algeri & Antonio F. Forgione & Carlo Migliardo, 2022. "Do spatial dependence and market power matter in the diversification of cooperative banks?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colvin, Christopher L. & de Jong, Abe & Fliers, Philip T., 2015. "Predicting the past: Understanding the causes of bank distress in the Netherlands in the 1920s," Explorations in Economic History, Elsevier, vol. 55(C), pages 97-121.
    2. Papanikolaou, Nikolaos I., 2018. "To be bailed out or to be left to fail? A dynamic competing risks hazard analysis," Journal of Financial Stability, Elsevier, vol. 34(C), pages 61-85.
    3. Gogas, Periklis & Papadimitriou, Theophilos & Agrapetidou, Anna, 2018. "Forecasting bank failures and stress testing: A machine learning approach," International Journal of Forecasting, Elsevier, vol. 34(3), pages 440-455.
    4. Maghyereh, Aktham I. & Awartani, Basel, 2014. "Bank distress prediction: Empirical evidence from the Gulf Cooperation Council countries," Research in International Business and Finance, Elsevier, vol. 30(C), pages 126-147.
    5. Fabrizio Ferriani & Wanda Cornacchia & Paolo Farroni & Eliana Ferrara & Francesco Guarino & Francesco Pisanti, 2019. "An early warning system for less significant Italian banks," Questioni di Economia e Finanza (Occasional Papers) 480, Bank of Italy, Economic Research and International Relations Area.
    6. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    7. Gerhard Hambusch & Sherrill Shaffer, 2016. "Forecasting bank leverage: an alternative to regulatory early warning models," Journal of Regulatory Economics, Springer, vol. 50(1), pages 38-69, August.
    8. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    9. Sun, Junjie & Wu, Deming & Zhao, Xinlei, 2018. "Systematic risk factors and bank failures," Journal of Economics and Business, Elsevier, vol. 98(C), pages 1-18.
    10. Kimmel, Randall K. & Thornton, John H. & Bennett, Sara E., 2016. "Can statistics-based early warning systems detect problem banks before markets?," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 190-216.
    11. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    12. Cleary, Sean & Hebb, Greg, 2016. "An efficient and functional model for predicting bank distress: In and out of sample evidence," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 101-111.
    13. Suss, Joel & Treitel, Henry, 2019. "Predicting bank distress in the UK with machine learning," Bank of England working papers 831, Bank of England.
    14. Guo Li & Lee Sanning & Sherrill Shaffer, 2009. "Statistical opacity in the US banking sector," CAMA Working Papers 2009-16, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. D. Fernández-Arias & M. López-Martín & T. Montero-Romero & F. Martínez-Estudillo & F. Fernández-Navarro, 2018. "Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in OECD Banks," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 275-297, June.
    16. Fiordelisi, Franco & Mare, Davide Salvatore, 2013. "Probability of default and efficiency in cooperative banking," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 30-45.
    17. Qiongbing Wu & Rebel A. Cole, 2024. "Macroeconomic conditions and bank failure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1212-1234, August.
    18. repec:erf:erfstu:78 is not listed on IDEAS
    19. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    20. Cole, Rebel A. & Wu, Qiongbing, 2009. "Is hazard or probit more accurate in predicting financial distress? Evidence from U.S. bank failures," MPRA Paper 24688, University Library of Munich, Germany, revised 01 Aug 2010.
    21. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    22. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:acctfi:v:53:y:2013:i:4:p:1149-1174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaanzea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.