IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i6p629-638.html
   My bibliography  Save this article

Potential Heterogenous Catalyst from Pineapple waste for Biodiesel Production

Author

Listed:
  • Angelika Uy

    (Philippine Sinter Corporation, Villanueva, Misamis Oriental, Philippines, 9002)

  • Juliet Dalagan

    (Chemistry department, Xavier University, Cagayan de Oro, Philippines, 9000)

Abstract

Biodiesel is a viable alternative to petroleum-based fuels due to its potential to lower greenhouse gas emissions. Recently, the utilization of waste biomass materials for the production of fuels and other energy products has been explored. In this current study, a potential heterogeneous solid catalyst was obtained from pineapple waste peels and graphite oxide (GO). Its potential for transesterification in biodiesel production was investigated using the impregnation mass ratio of 1 GO: 3 pineapple waste. The methanol to coconut oil molar ratio of 18:1, impregnation temperature of 80 °C and H3PO4 activating agent were found to yield the highest fatty acid methyl ester (FAME) yield of 53.71%.

Suggested Citation

  • Angelika Uy & Juliet Dalagan, 2024. "Potential Heterogenous Catalyst from Pineapple waste for Biodiesel Production," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(6), pages 629-638, June.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:6:p:629-638
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-6/629-638.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/potential-heterogenous-catalyst-from-pineapple-waste-for-biodiesel-production/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    2. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Gitz & Jean-Charles Hourcade & Philippe Ciais, 2006. "The Timing of Biological Carbon Sequestration and Carbon Abatement in the Energy Sector Under Optimal Strategies Against Climate Risks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 113-134.
    2. Michael Obersteiner & G. Alexandrov & Pablo Benítez & Ian McCallum & Florian Kraxner & Keywan Riahi & Dmitry Rokityanskiy & Yoshiki Yamagata, 2006. "Global Supply of Biomass for Energy and Carbon Sequestration from Afforestation/Reforestation Activities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1003-1021, September.
    3. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    4. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    5. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    6. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    7. Mersie Ejigu, 2008. "Toward energy and livelihoods security in Africa: Smallholder production and processing of bioenergy as a strategy," Natural Resources Forum, Blackwell Publishing, vol. 32(2), pages 152-162, May.
    8. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," Conference papers 331729, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    10. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    11. Li, Zeyun & Kuo, Yen-Ku & Mahmud, Abdul Rahman & Nassani, Abdelmohsen A. & Haffar, Mohamed & Muda, Iskandar, 2022. "Integration of renewable energy, environmental policy stringency, and climate technologies in realizing environmental sustainability: Evidence from OECD countries," Renewable Energy, Elsevier, vol. 196(C), pages 1376-1384.
    12. repec:wsr:ecbook:2013:i:iv-004 is not listed on IDEAS
    13. Danny G. Le Roy & Kurt K. Klein, 2012. "The Policy Objectives of a Biofuel Industry in Canada: An Assessment," Agriculture, MDPI, vol. 2(4), pages 1-16, December.
    14. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    15. Karen Maguire, 2013. "U.S. Energy Subsidies:Do They Reduce Electricity Generated CO2 Emissions?," Economics Working Paper Series 1402, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Jul 2013.
    16. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    17. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    18. Camelia Burja, 2012. "Greenhouse Gas Emissions From Agriculture: A Comparative Analysis Between Countries That Recently Joined The Eu," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(14), pages 1-25.
    19. de Cara, Stephane & Houze, Martin & Jayet, Pierre-Alain, 2004. "Greenhouse gas emissions from agriculture in the EU: A spatial assessment of sources and abatement costs," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58401, Australian Agricultural and Resource Economics Society.
    20. Liu, Zuoming, 2019. "The optimal biopower capacity in co-firing plants– An empirical analysis," Energy Economics, Elsevier, vol. 78(C), pages 392-400.
    21. Paritosh, Kunwar & Bose, Archishman, 2024. "Application of biogenic carbon in renewable energy vectors and devices: A step forward to decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:6:p:629-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.