IDEAS home Printed from https://ideas.repec.org/a/ags/jpjjre/314859.html
   My bibliography  Save this article

Determinants of Adoption and Continuous Use of Improved Maize Seeds in Burkina Faso

Author

Listed:
  • Sanou, Bakary
  • Savadogo, Kimseyinga
  • Sakurai, Takeshi

Abstract

No abstract is available for this item.

Suggested Citation

  • Sanou, Bakary & Savadogo, Kimseyinga & Sakurai, Takeshi, 2017. "Determinants of Adoption and Continuous Use of Improved Maize Seeds in Burkina Faso," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 19.
  • Handle: RePEc:ags:jpjjre:314859
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/314859/files/19_21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gracious M. Diiro & Abdoul G. Sam, 2015. "Agricultural technology adoption and Nonfarm earnings in Uganda: a Semiparametric analysis," Journal of Developing Areas, Tennessee State University, College of Business, vol. 49(2), pages 145-162, April-Jun.
    2. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    3. Moser, Christine M. & Barrett, Christopher B., 2003. "The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar," Agricultural Systems, Elsevier, vol. 76(3), pages 1085-1100, June.
    4. Millicent deGraft-Johnson & Aya Suzuki & Takeshi Sakurai & Keijiro Otsuka, 2014. "On the transferability of the Asian rice green revolution to rainfed areas in sub-Saharan Africa: an assessment of technology intervention in Northern Ghana," Agricultural Economics, International Association of Agricultural Economists, vol. 45(5), pages 555-570, September.
    5. Savadogo, Kimseyinga & Reardon, Thomas & Pietola, Kyosti, 1998. "Adoption of improved land use technologies to increase food security in Burkina Faso: relating animal traction, productivity, and non-farm income," Agricultural Systems, Elsevier, vol. 58(3), pages 441-464, November.
    6. Minten, Bart & Barrett, Christopher B., 2008. "Agricultural Technology, Productivity, and Poverty in Madagascar," World Development, Elsevier, vol. 36(5), pages 797-822, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desbureaux Sébastien & Eric Kéré Nazindigouba & Combes Motel Pascale, 2016. "Working Paper 238 - Impact Evaluation in a Landscape: protected natural forests, anthropized forested lands and deforestation leakages in Madagascar’s rainforests," Working Paper Series 2341, African Development Bank.
    2. Ayu Pratiwi & Aya Suzuki, 2020. "Does training location matter? Evidence from a randomized field experiment in Rural Indonesia," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 8(1), pages 1-23, December.
    3. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.
    4. Khushbu Mishra & Abdoul G. Sam & Gracious M. Diiro & Mario J. Miranda, 2020. "Gender and the dynamics of technology adoption: Empirical evidence from a household‐level panel data," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 857-870, November.
    5. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    6. Fisher, Monica & Kandiwa, Vongai, 2014. "Can agricultural input subsidies reduce the gender gap in modern maize adoption? Evidence from Malawi," Food Policy, Elsevier, vol. 45(C), pages 101-111.
    7. Sébastien Desbureaux & Eric Nazindigouba Kere & Pascale Combes Motel, 2016. "Impact Evaluation in a Landscape: Protected Natural Forests, Anthropized Forested Lands and Deforestation Leakages in Madagascar's Rainforests," Working Papers halshs-01342182, HAL.
    8. Doris Läpple, 2010. "Adoption and Abandonment of Organic Farming: An Empirical Investigation of the Irish Drystock Sector," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 697-714, September.
    9. Wainaina, Priscilla & Tongruksawattana, Songporne & Qaim, Matin, 2014. "Tradeoffs and Complementarities in the Adoption of Improved Seeds, Fertilizer, and Natural Resource Management Technologies in Kenya," GlobalFood Discussion Papers 189914, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.
    10. Raju Ghimire & Wen-Chi Huang, 2015. "Household wealth and adoption of improved maize varieties in Nepal: a double-hurdle approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1321-1335, December.
    11. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    12. Christine M. Moser & Christopher B. Barrett, 2006. "The complex dynamics of smallholder technology adoption: the case of SRI in Madagascar," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 373-388, November.
    13. Christensen, Cheryl, 2018. "Progress and Challenges in Global Food Security," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, vol. 0(01), February.
    14. Relwendé A. Nikiema & Sakiko Shiratori & Jules Rafalimanantsoa & Ryosuke Ozaki & Takeshi Sakurai, 2023. "How are higher rice yields associated with dietary outcomes of smallholder farm households of Madagascar?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 823-838, June.
    15. Varma, Poornima, 2017. "Adoption of System of Rice Intensification and its Impact on Rice Yields and Household Income: An Analysis for India," IIMA Working Papers WP2017-02-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Bachmann, Erika & Natcher, David & Kulshreshtha, Suren & Baco, Mohamed Nasser & Akponikpe, P. B. I. & Peak, Derek, 2016. "Profitability and Institutional Constraints to the Adoption of Fertilizer Microdosing in Northwest Benin," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(3).
    17. Graf, Sarah Lena & Oya, Carlos, 2021. "Is the system of rice intensification (SRI) pro poor? Labour, class and technological change in West Africa," Agricultural Systems, Elsevier, vol. 193(C).
    18. Islam, Abu Hayat, 2015. "Can Integrated Rice-Fish System Increase Welfare of the Marginalized Extreme Poor in Bangladesh? A DID Matching Approach," 2015 Conference, August 9-14, 2015, Milan, Italy 211792, International Association of Agricultural Economists.
    19. Varma, P., 2018. "Adoption and the Impact of System of Rice Intensification on Rice Yields and Household Income: A study for India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275986, International Association of Agricultural Economists.
    20. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2012. "Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste," Agricultural Systems, Elsevier, vol. 108(C), pages 64-73.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jpjjre:314859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesjjea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.