IDEAS home Printed from https://ideas.repec.org/a/aeq/aeqsjb/v126_y2006_i3_q3_p405-436.html
   My bibliography  Save this article

Imputation Rules to Improve the Education Variable in the IAB Employment Subsample

Author

Listed:
  • Bernd Fitzenberger
  • Aderonke Osikominu
  • Robert Völter

Abstract

The education variable in the IAB employment subsample has two shortcomings: missing values and inconsistencies in the reporting rule. We propose several deductive imputation procedures to improve the variable. They mainly use the multiple education information available in the data because employees' education is reported at least once a year. We compare the improved data from the different procedures and the original data in typical applications in labor economics: educational composition of employment and wage inequality. We find that correcting the education variable shows the educational attainment of the male labor force to be higher than measured with the original data and changes some estimates of wage inequality. Our analysis does not provide a definite rule on how to choose among the different imputation procedures discussed, but we recommend correcting the original education variable.

Suggested Citation

  • Bernd Fitzenberger & Aderonke Osikominu & Robert Völter, 2006. "Imputation Rules to Improve the Education Variable in the IAB Employment Subsample," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 126(3), pages 405-436.
  • Handle: RePEc:aeq:aeqsjb:v126_y2006_i3_q3_p405-436
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas J. Kane & Cecilia Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    2. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    3. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    4. Katz, Lawrence F. & Autor, David H., 1999. "Changes in the wage structure and earnings inequality," Handbook of Labor Economics,in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 26, pages 1463-1555 Elsevier.
    5. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics,in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863 Elsevier.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeq:aeqsjb:v126_y2006_i3_q3_p405-436. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gabriele Freudenmann). General contact details of provider: http://www.duncker-humblot.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.