IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v105y2015i5p491-95.html
   My bibliography  Save this article

Prediction Policy Problems

Author

Listed:
  • Jon Kleinberg
  • Jens Ludwig
  • Sendhil Mullainathan
  • Ziad Obermeyer

Abstract

Most empirical policy work focuses on causal inference. We argue an important class of policy problems does not require causal inference but instead requires predictive inference. Solving these "prediction policy problems" requires more than simple regression techniques, since these are tuned to generating unbiased estimates of coefficients rather than minimizing prediction error. We argue that new developments in the field of "machine learning" are particularly useful for addressing these prediction problems. We use an example from health policy to illustrate the large potential social welfare gains from improved prediction.

Suggested Citation

  • Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
  • Handle: RePEc:aea:aecrev:v:105:y:2015:i:5:p:491-95
    Note: DOI: 10.1257/aer.p20151023
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/aer.p20151023
    Download Restriction: no

    File URL: https://www.aeaweb.org/aer/ds/10505/P2015_1023_ds.zip
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    References listed on IDEAS

    as
    1. Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2011. "Can You Recognize an Effective Teacher When You Recruit One?," Education Finance and Policy, MIT Press, vol. 6(1), pages 43-74, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:105:y:2015:i:5:p:491-95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael P. Albert). General contact details of provider: http://edirc.repec.org/data/aeaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.