IDEAS home Printed from https://ideas.repec.org/p/knz/dpteco/1511.html
   My bibliography  Save this paper

Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates

Author

Listed:
  • Jing Zeng

    (Department of Economics, University of Konstanz, Germany)

Abstract

European Monetary Union (EMU) member countries' forecasts are often combined to obtain the forecasts of the Euro area macroeconomic aggregate variables. The aggregation weights which are used to produce the aggregates are often considered as combination weights. This paper investigates whether using different combination weights instead of the usual aggregation weights can help to provide more accurate forecasts. In this context, we examine the performance of equal weights, the least squares estimators of the weights, the combination method recently proposed by Hyndman et al. (2011) and the weights suggested by shrinkage methods. We find that some variables like real GDP and GDP deflator can be forecasted more precisely by using flexible combination weights. Furthermore, combining only forecasts of the three largest European countries helps to improve the forecasting performance. The persistence of the individual data seems to play an important role for the relative performance of the combination.

Suggested Citation

  • Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
  • Handle: RePEc:knz:dpteco:1511
    as

    Download full text from publisher

    File URL: http://www.uni-konstanz.de/FuF/wiwi/workingpaperseries/WP_11_JingZeng_2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hendry, David & Hubrich, Kirstin, 2006. "Forecasting Economic Aggregates by Disaggregates," CEPR Discussion Papers 5485, C.E.P.R. Discussion Papers.
    2. Keith Kuester & Volker Wieland, 2010. "Insurance Policies for Monetary Policy in the Euro Area," Journal of the European Economic Association, MIT Press, vol. 8(4), pages 872-912, June.
    3. Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
    4. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    5. Anderson, Heather M. & Dungey, Mardi & Osborn, Denise R. & Vahid, Farshid, 2011. "Financial integration and the construction of historical financial data for the Euro Area," Economic Modelling, Elsevier, vol. 28(4), pages 1498-1509, July.
    6. Ralf Brüggemann & Helmut Lütkepohl & Massimiliano Marcellino, 2008. "Forecasting euro area variables with German pre-EMU data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 465-481.
    7. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    8. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    9. Zellner, Arnold & Tobias, Justin, 1998. "A Note on Aggregation, Disaggregation and Forecasting Performance," CUDARE Working Papers 198677, University of California, Berkeley, Department of Agricultural and Resource Economics.
    10. Bosker, E.M., 2006. "On the aggregation of eurozone data," Economics Letters, Elsevier, vol. 90(2), pages 260-265, February.
    11. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    12. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886.
    13. Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
    14. Luca Benati, 2008. "Investigating Inflation Persistence Across Monetary Regimes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 1005-1060.
    15. Filippo Altissimo & Laurent Bilke & Andrew Levin & Thomas Mathä & Benoit Mojon, 2006. "Sectoral and Aggregate Inflation Dynamics in the Euro Area," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 585-593, 04-05.
    16. Greene, William H & Seaks, Terry G, 1991. "The Restricted Least Squares Estimator: A Pedagogical Note," The Review of Economics and Statistics, MIT Press, vol. 73(3), pages 563-567, August.
    17. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    18. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    19. Beyer, Andreas & Doornik, Jurgen A & Hendry, David F, 2001. "Constructing Historical Euro-Zone Data," Economic Journal, Royal Economic Society, vol. 111(469), pages 102-121, February.
    20. Swanson, Norman R & Zeng, Tian, 2001. "Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 425-440, September.
    21. Guenter W. Beck & Kirstin Hubrich & Massimiliano Marcellino, 2009. "Regional inflation dynamics within and across euro area countries and a comparison with the United States [‘On the relevance and nature of regional inflation differentials: The case of Spain’, Banc," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(57), pages 142-184.
    22. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    23. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    24. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    25. E. Shlifer & R. W. Wolff, 1979. "Aggregation and Proration in Forecasting," Management Science, INFORMS, vol. 25(6), pages 594-603, June.
    26. Tiao, G. C. & Guttman, Irwin, 1980. "Forecasting contemporal aggregates of multiple time series," Journal of Econometrics, Elsevier, vol. 12(2), pages 219-230, February.
    27. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    28. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    29. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    30. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
    31. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    32. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    33. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    34. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantin ANGHELACHE & Cristina SACALA, 2016. "Theoretical model used for macroeconomic analysis," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 64(7), pages 57-60, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
    2. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    3. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    4. Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
    5. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    6. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    7. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    8. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    10. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    11. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    12. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    13. Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
    16. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    17. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    18. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    19. Ralf Brüggemann & Jing Zeng, 2015. "Forecasting Euro-Area Macroeconomic Variables Using a Factor Model Approach for Backdating," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 22-39, February.
    20. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    More about this item

    Keywords

    Forecast combination; aggregation; macroeconomic forecasting; hierarchical time series; persistence in data;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:knz:dpteco:1511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office Ursprung (email available below). General contact details of provider: https://edirc.repec.org/data/fwkonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.