Advanced Search
MyIDEAS: Login to save this paper or follow this series

Long-Memory Forecasting of U.S. Monetary Indices

Contents:

Author Info

  • John Barkoulas

    ()
    (University of Tennessee)

  • Christopher F. Baum

    ()
    (Boston College
    DIW Berlin)

Abstract

Several studies have tested for long-range dependence in macroeconomic and financial time series but very few have assessed the usefulness of long-memory models as forecast generating mechanisms. This study tests for fractional differencing in the U.S. monetary indices (simple sum and divisia) and compares the out-of-sample fractional forecasts to benchmark forecasts. The long-memory parameter is estimated using RobinsonÕs Gaussian semiparametric and multivariate log-periodogram methods. The evidence amply suggests that the monetary series possess a fractional order between one and two. Fractional out-of-sample forecasts are consistently more accurate (with the exception of the M3 series) than benchmark autoregressive forecasts but the forecasting gains are not generally statistically significant. In terms of forecast encompassing, the fractional model encompasses the autoregressive model for the divisia series but neither model encompasses the other for the simple sum series.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://fmwww.bc.edu/EC-P/wp558.pdf
File Function: main text
Download Restriction: no

Bibliographic Info

Paper provided by Boston College Department of Economics in its series Boston College Working Papers in Economics with number 558.

as in new window
Length: 23 pages
Date of creation: 01 May 2003
Date of revision:
Publication status: published, Journal of Forecasting, 2006, 25, 291-302
Handle: RePEc:boc:bocoec:558

Contact details of provider:
Postal: Boston College, 140 Commonwealth Avenue, Chestnut Hill MA 02467 USA
Phone: 617-552-3670
Fax: +1-617-552-2308
Email:
Web page: http://fmwww.bc.edu/EC/
More information through EDIRC

Related research

Keywords: long memory; ARFIMA model; macroeconomic forecasting.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
  2. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
  3. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  4. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  5. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
  6. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
  7. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  8. John Barkoulas & Christopher F. Baum, 1996. "Fractional Differencing Modeling and Forecasting of Eurocurrency Deposit Rates," Boston College Working Papers in Economics 317., Boston College Department of Economics.
  9. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, Southern Economic Association, vol. 65(4), pages 900-913, April.
  10. Diebold, Francis X. & Lindner, Peter, 1996. "Fractional integration and interval prediction," Economics Letters, Elsevier, vol. 50(3), pages 305-313, March.
  11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, April.
  12. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
  13. John Barkoulas & Christopher F. Baum & Mustafa Caglayan, 1998. "Fractional Monetary Dynamics," Boston College Working Papers in Economics 321., Boston College Department of Economics.
  14. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  15. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2009. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Discussion Papers of DIW Berlin 879, DIW Berlin, German Institute for Economic Research.
  2. S. D. Grose & D. S. Poskitt, 2006. "The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 15/06, Monash University, Department of Econometrics and Business Statistics.
  3. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Society for Computational Economics, vol. 41(2), pages 249-265, February.
  4. Fernandez, Viviana, 2010. "Commodity futures and market efficiency: A fractional integrated approach," Resources Policy, Elsevier, vol. 35(4), pages 276-282, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:558. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.